| Communauté

i UNIVERSITE Grenoble Alpes

THESE

Pour obtenir le grade de

DOCTEUR DE LA)
COMMUNAUTE UNIVERSITE GRENOBLE ALPES

Spécialité : Informatique
Arrété ministériel : 25 mai 2016

Présentée par

Louis JACHIET

Thése dirigée par Nabil LAYAIDA
et codirigée par Pierre GENEVES, CNRS

préparée au sein du Laboratoire Institut National de Recherche
en Informatique et en Automatique

dans I'Ecole Doctorale Mathématiques, Sciences et
technologies de I'information, Informatique

Sur la compilation des langages de requétes
pour le web des données : optimisation et
évaluation distribuée de SPARQL

On the foundations for the compilationof
web data queries: optimization
anddistributed evaluation of SPARQL.

Thése soutenue publiqguement le 13 septembre 2018,
devant le jury composé de :

Monsieur NABIL LAYAIDA

DIRECTEUR DE RECHERCHE, INRIA CENTRE DE GRENOBLE
RHONE-ALPES, Directeur de thése

Monsieur DARIO COLAZZO

PROFESSEUR, UNIVERSITE PARIS-DAUPHINE, Rapporteur
Madame IOANA MANOLESCU

DIRECTRICE DE RECHERCHE, INRIA CENTRE SACLAY- ILE-DE-
FRANCE, Rapporteur

Monsieur PIERRE GENEVES

CHARGE DE RECHERCHE, CNRS DELEGATION ALPES, Co-directeur
de thése R

Monsieur JEROME EUZENAT

DIRECTEUR DE RECHERCHE, INRIA CENTRE DE GRENOBLE
RHONE-ALPES, Président

Monsieur PATRICK VALDURIEZ

DIRECTEUR DE RECHERCHE, INRIA CENTRE S. ANTIPOLIS-
MEDITERRANEE, Examinateur

Abstracts

Abstract

The topic of my PhD is the compilation of web data query languages. More particularly, the
analysis and the distributed evaluation of a such language: SPARQL. My main contributions
concern the evaluation of web data queries especially for recursive queries or for distributed
settings.

In this thesis, I introduce p-algebra: it is a kind of relational algebra equipped with
a fixpoint operator. I present its syntax, semantics, and a translation from SPARQL with
Property Paths (a new feature of SPARQL allowing some form of recursion) to this u-algebra.

I then present a type system and show how p-algebra terms can be rewritten to terms
with equivalent semantics using either classical rewrite rules of the relational world or new
rules that are specific to this p-algebra. We demonstrate the correctness of these new rules
that are introduced to handle the rewriting of fixpoints: they allow to push filters, joins and
projections inside fixpoints or to combine several fixpoints (when some condition holds).

I demonstrate how these terms could be evaluated both from a general perspective and
in the specific case of a distributed evaluation. I devise a cost model for p-algebra terms
inspired by this evaluation. With this cost model and this evaluator, several terms that are
semantically equivalent can be seen as various Query Execution Plans (QEP) for a given
query. I show that the p-algebra and its rewrite rules allow the reach of QEP that are
more efficient than all QEP considered in other existing approaches and confirm this by an
experimental comparison of several query evaluators on SPARQL queries with recursion.

I investigate the use of an efficient distributed framework (Spark) to build a fast SPARQL
distributed query evaluator. It is based on a fragment of p-algebra, limited to operators
that have a translation into fast Spark code. The result of this has been used to implement
SPARQLGX, a state of the art distributed SPARQL query evaluator.

Finally, my last contribution concerns the estimation of the cardinality of solutions to
a p-algebra term. Such estimators are key in the optimization. Indeed, most cost models
for QEP rely on such estimators and are therefore necessary to determine the most efficient
QEP. I specifically consider the conjunctive query fragment of p-algebra (which corresponds
to the well-known Basic Graph Pattern fragment of SPARQL). I propose a new cardinality
estimation based on statistics about the data and implemented the method into SPARQLGX.
Experiments show that this method improves the performance of SPARQLGX.

4 Abstract

Résumé

Ma thése porte sur la compilation des langages de requétes orientés web des données. Plus
particuliecrement, ma thése s’intéresse a l'analyse, l'optimisation et 1’évaluation distribuée

d’un tel langage : SPARQL.

Ma contribution principale est 1’élaboration d’une méthode nouvelle particuliérement in-
téressante pour des requétes contenant de la récursion ou dans le cadre d’une évaluation
distribuée. Cette nouvelle méthode s’appuie sur un nouvel outil que nous introduisons :
la p-algeébre. C’est une variation de l'algeébre relationnelle équipée d’un opérateur de point
fixe. Nous présentons sa syntaxe et sémantique ainsi qu’une traduction vers la p-algébre
depuis SPARQL avec Property Paths (une fonctionnalité introduite dans le dernier standard
SPARQL qui autorise une forme de récursion).

Nous présentons ensuite un systéme de types et nous montrons comment les termes de la
p-algeébre peuvent étre réécrits en d’autres termes (de sémantique équivalente) en utilisant
soit des régles de réécriture provenant de l’algebre relationnelle soit des régles nouvelles,
spécifiques a la p-algébre. Nous démontrons la correction des nouvelles régles qui sont intro-
duites pour réécrire les points fixes : elles permettent de pousser les filtres, les jointures ou
les projections a l'intérieur des points fixes (dépendant des certaines conditions sur le terme).

Nous présentons ensuite comment ces termes peuvent étre évalués, d’abord de maniére
générale, puis en considérant le cas particulier d’une évaluation sur une plateforme distribuée.
Nous présentons aussi un modéle de coiit pour I’évaluation des termes. A 'aide du modéle de
colt et de I’évaluateur, plusieurs termes qui sont équivalents d’un point de vue sémantiques
peuvent maintenant étre vus comme différentes maniéres d’évaluer les termes avec différents
cotlits estimés.

Nous montrons alors que les termes qui sont considérés grace aux nouvelles régles de
réécritures que nous avons introduites, permettent une exécution plus efficace que ce qui
était possible dans les autres approches existantes. Nous confirmons ce résultat théorique
par une expérimentation comparant plusieurs exécuteurs sur des requétes SPARQL contenant
de la récursion. Nous avons investigué comment utiliser une plateforme de calcul distribuée
(Apache Spark) pour produire un évaluateur efficace de requétes SPARQL. Cet évaluateur
s’appuie sur un fragment de la p-algebre, limité aux opérateurs qui ont une traduction en
code Spark efficace. Le résultat de ces investigations a résultat en I'implémentation de SPAR-
QLGX, un évaluateur SPARQL distribué en pointe par rapport a ’état de I'art.

Pour finir, ma derniére contribution concerne I’estimation de la cardinalité des solutions a
un terme de la p-algébre. Ces estimateurs sont particuliérement utiles pour 'optimisation. En
effet, les modéles de coiit reposent généralement sur de telles estimations pour choisir quel sera
le terme le plus efficace parmi plusieurs termes équivalents. Pour cette estimation nous nous
intéressons tout particuliérement au fragment conjonctif de la p-algébre (ce qui correspond
au fragment bien connu Basic Graph Pattern de SPARQL). Notre nouvelle estimation de
cardinalité s’appuie sur des statistiques sur les données et a été implémenté dans SPARQLGX.

Nos expériences montrent que cette méthode permet de grandement accélérer 1’évaluation de
SPARQL sur SPARQLGX.

Publications

Published in peer reviewed international conferences

[STMR18]

[ABJM17]

|GJGL16a]

[GJGLI6b]

ProvSQL: Provenance and Probability Management in PostgreSQL.
Pierre Senellart, Louis Jachiet, Silviu Maniu, Yann Ramusat.
Proceedings of the VLDB Endowment, Volume 11 Number 12.

A Circuit-Based Approach to Efficient Enumeration.

Antoine Amarilli, Pierre Bourhis, Louis Jachiet, Stefan Mengel.

44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland.

SPARQLGX: Efficient Distributed Evaluation of SPARQL with Apache
Spark.

Damien Graux, Louis Jachiet, Pierre Geneves, Nabil Layaida.

The 15th International Semantic Web Conference ISWC, Oct 2016, Kobe, Japan.

SPARQLGX in action: Efficient Distributed Evaluation of SPARQL with
Apache Spark.

Damien Graux, Louis Jachiet, Pierre Geneves, Nabil Layaida.

The 15th International Semantic Web Conference ISWC, Oct 2016, Kobe, Japan.

Published only in national conferences (peer reviewed)

[JGLG17]

|GJGL17]

[JGGLI1S]

Une nouvelle algébre pour SPARQL permettant ’optimisation des requétes
contenant des Property Paths.

Louis Jachiet, Pierre Geneves, Nabil Layaida et Nils Gesbert

Poster at Bases de données et application 2017, Nancy, France

Une classification expérimentale multi-critéres des évaluateurs SPARQL ré-
partis.

Damien Graux, Louis Jachiet, Pierre Geneves et Nabil Layaida

Bases de données et application 2017, Nancy, France

On the optimization of recursive relational queries.
Louis Jachiet, Nils Gesbert, Pierre Geneves & Nabil Layaida
Bases de données et application 2018, Bucarest, Romania

Awaiting publication

The SPARQLGX System for Distributed Evaluation of SPARQL Queries.
Damien Graux, Louis Jachiet, Pierre Geneves, Nabil Layaida
https://hal.inria.fr/hal-01621480

Optimizing sparql query evaluation with a worst-case cardinality estimation
based on statistics on the data.

Louis Jachiet, Pierre Genevés, Nabil Layaida
https://hal.archives-ouvertes.fr/hal-01524387

https://hal.inria.fr/hal-01621480
https://hal.archives-ouvertes.fr/hal-01524387

Abstract

e An efficient translation from a modal p-calculus over finite trees with con-
verse to tree automata.
Louis Jachiet, Pierre Genevés, Nabil Layaida
https://hal.archives-ouvertes.fr/hal-01117830

https://hal.archives-ouvertes.fr/hal-01117830

Remerciements

Je tiens & remercier mes deux encadrants de thése : Nabil Layaida et Pierre Geneves. Ils
m’ont intégré a I’équipe WAM en stage de licence puis dans 1’équipe TYREX pour un second
stage et enfin ont accepté d’encadrer ma thése. Je tiens aussi a remercier Nils Gesbert. Au-
dela des conversations intéressantes (scientifiques ou non), Nils a suivi mes recherches, s’est
réguliérement plongé dans mes écrits (souvent obscurs) et m’a fourni de nombreux retours
pertinents | Merci !

Je tiens ensuite & remercier tous les membres du jury. Je suis honoré par la présence de
chacune de ces personnes : Nabil et Pierre, mes encadrants de thése ; Mme Manolescu et
M. Colazzo, & qui j'adresse un remerciement tout spécial pour avoir accepté de rapporter
mon manuscrit et pour avoir fourni de nombreux conseils qui m’ont permis d’améliorer le
manuscrit actuel ; MM. Euzenat et Valduriez qui ont accepté d’examiner ma thése et avec
lesquels j’ai eu l'occasion a plusieurs reprises de discuter de recherche et de mon futur dans
ce milieu.

Je remercie aussi les nombreuses personnes qui sont passées par ’équipe TYREX et avec
qui j’ai eu plaisir & travailler : Abdullah, Canard, Cécile, Graux, Helen, Mathieu, Thibaud,
Thomas, ainsi que les “nouveaux” : Fateh, Sarah, Raouf, Muideen, Laurent.

J'ai passé cette derniére année de thése, en ATER, a 'Ecole Normale Supérieure. Je
remercie trés fortement Pierre Senellart, pour m’avoir aidé a candidater puis intégré dans
son équipe. Travailler aux cotés de Pierre a été trés instructif, je regrette de n’avoir eu que
peu de temps a consacrer a la recherche dans cette équipe dont les sujets étaient intéressants
et 'ambiance de travail trés stimulante. Je remercie tous les membres de 1'équipe VALDA
qui m’ont accueilli et n’ont jamais hésité a répondre & mes questions. Plus généralement, je
tiens & remercier tous les membres du haut du DI pour ’excellente année passée avec elleux.

J’ai eu 'occasion durant ma these de discuter avec de nombreuses personnes et je me
suis beaucoup nourri de ces échanges. Je tiens particuliérement a remercier la communauté
d’ulminfo pour les intenses discussions sur de multiples sujets. Et pour des échanges plus
scientifiques, passionnants, qui ont mené a des collaborations : Pierre B., Pierre S., Vincent
L., a3nm.

J’en viens maintenant a remercier ma famille, & qui je dois mon gotit des sciences et qui
m’a toujours soutenu dans cette voie et méme poussé, quand il le fallait, a aller toujours
plus loin. Cette thése a été un éloignement physique mais c’est toujours un plaisir de vous
retrouver.

Je voudrais aussi remercier mes amis. Nombreuses sont les personnes que j’ai déja citées
qui sont bien plus que des collégues et je les en remercie. En plus de ceux-ci, je voudrais
remercier les personnes suivantes qui ont été présentes tout au long de ma thése : les grotas
(aaz, amiel, grogrodile, grotarrel, grotenedicte, grotillon, haveo, helene, jonas, Lea, Machin,
maud, Mc, MLB, p4bl0, pandarion, picomango, snoopy, Ted) et la grotadhérence (trop peu-
plée pour étre listée), groupe d’ami-e-s formé pendant mes études et dont je suis resté trés
proche malgré la distance ; les pensionnaires de divers canaux d’ulminfo (a3nm, Bibi, olasd,
iXce, et bien d’autres) et enfin les nombreux amis que je me suis faits & Grenoble : les colocs,
les voisins, les rolistes, les litt&Arts (les voisines !).

Enfin je tiens a remercier Camille Brouzes, qui m’a supporté moralement, hébergé et qui
m’a beaucoup aidé dans les derniéres étapes de cette thése.

Un grand merci !

General introduction

The semantic web is an extension to the World Wide Web whose goal is to make the Web
carry more semantic information in a machine-readable format. Towards this goal, the W3C
developed several standards such as RDF which models knowledge using graphs and SPARQL
which is a query language for RDF graphs.

The field of research in databases is more than fifty years old but since its introduction
by Codd at the beginning of the 70s, the relational model has received most of the attention
from both the academia and the databases vendors. In particular, the optimization and the
fast evaluation of relational queries has been extensively studied.

As new data models and query languages raise new challenges and as the RDF+SPARQL
model diverges from the relational model, an interrogation naturally appears: can we develop
a new model based on the relational model and its thorough body of research to tackle languages
such as SPARQL?

In order to answer this question, we will present models of data and queries in the first
part of this thesis. We will start in chapter 1 with the semantic web world and describe the
RDF data model and its companion query language SPARQL. SPARQL will be presented via the
SPARQL—-algebra which is a formal modeling of SPARQL queries provided by the w3 and used
by several query evaluators to represent and manipulate queries internally. We will also briefly
look into existing query evaluators and assess their performance. This performance review
will, in particular, investigate two salient points where we observe counter performances: on
complex queries (e.g. with recursion) and on very large datasets.

As the relational model was at the center of a huge body of research, and as it will serve
as the basis for our proposed approach, we will present, in chapter 2, the relational model
and algebra along with the Datalog query language. We will also compare the relational
model with the RDF+SPARQL model which will justify that our approach does not use the
plain relational model.

As we will have demonstrated by going through both models, there are remaining chal-
lenges for the optimization of SPARQL queries and particularly for complex queries with
recursion. For this type of queries, even traditional relational query evaluators cannot han-
dle well very simple queries. Also, at the opposite side, distributed query evaluators for very
large datasets could also benefit from performance improvements. That is why, in the second
part of this thesis, we will introduce our general approach to SPARQL evaluation using our
new model: the p-algebra.

An overall depiction of our approach is presented in figure 1. It mimics the optimization
strategy of SQL, which can summed up as this process: first the query is translated into a

10 General introduction

logical representation; then, using rewrite rules, we produce many equivalent terms (in the
sense that they have the same answers) to the term obtained through the translation. Each
of those terms can be seen as a Query Execution Plans for the original query and, thus, for
each term, we estimate the time this term will take to be evaluated. Finally we select the
term that takes an estimated minimal time to be evaluated and evaluate it. In this thesis
our perspective is the optimization of SPARQL query evaluation but since our optimization
efforts will concentrate on this p-algebra any language that could be converted into p-algebra
would benefit from our work.

The question of adapting the relational algebra that models relational queries to model
the evaluation of languages a la SPARQL will be dealt with in chapter 3. In this chapter, we
will present the syntax and semantics of our p-algebra. We will also present a translation
from a large fragment of SPARQL to this query language. This chapter corresponds to the
first arrow of figure 1.

We will then dedicate chapter 4 to present our rewriting strategy for p-algebra terms. This
strategy, as shown in figure 1, distinguishes between rewrite rules that produce new terms
and rewrite rules that serve a normalizing purpose. The idea behind producing rules is to
create new query execution plans while the idea behind the normalizing rules is to reduce the
numbers of u-algebra terms considered. In order to describe when those rules can be applied,
this chapter introduces a typing mechanism for p-algebra terms. This chapter also includes
definitions, lemmas and theorems in order to prove the validity of the new rewrite rules we
introduced.

Given all the terms produced by our rewriting strategy, the natural next step is to devise
a cost model for our terms, allowing us to select the term that is the most efficient. However,
in order to devise a cost model, we need a precise idea of how our terms will be evaluated.
Chapter 5 explores this problematic and proposes a general way to evaluate u-algebra terms
and describes two prototypes we implemented: a p-algebra evaluator called musparql and a
distributed evaluator called SPARQLGX based on Apache Spark. SPARQLGX is limited to a
fragment of the u-algebra (and thus a fragment of SPARQL). Using these evaluators we can
devise a cost model that can, for instance, predict accurately the time to compute the join
of two sets A and B knowing the size of A and B. However, to decide the best term, this
cost model will, in turn, depend on a cardinality estimation.

This quest for a cardinality estimation scheme for the p-algebra is tackled in the chapter 6
with a new technique that provides a worst-case cardinality estimation based on a new tool:
collection summaries. Collection summaries capture the implicit schema often found in RDF
datasets. Our new tool captures this schema even in the presence of a few violations.

To validate our approach, chapter 7 compares it with the state of the art from both
theoretical and empirical standpoints. The theoretical part compares query execution plans
possible with the p-algebra with query execution plans of various other approaches. We
demonstrate that, even on very simple queries there are graphs where our new plans have a
better complexity: in the scenario we present they have a linear complexity (in the size of the
graph) while all other approaches are, at least, quadratic. We then rediscover experimentally
this result by comparing our implementation based on the p-algebra with SPARQL, SQL and
Datalog engines. Finally we show that our distributed evaluator of SPARQL queries has state
of the art performance and that our cardinality estimation allow us to improve further the
performance of SPARQLGX.

= Chapter 3 1=

rewriting =———

[SPARQL query]

translation ==

I I rewritten u terms]
I g ———— normalized p terms]
normalization < normalization

I l

' RL_EL_BE _NY] - —-—

cardinality estimation

R ———

4
!
| ~—— typing
I
|
!

o —u\

N

i Chapter b = e o= iom 1o,
|
|

]

I

I ([Annotated s terms] : Graded p terms]
: ﬁ cost model

|

|

|

\'—-—'ChapterG--—--— I
S N " min i
I

|

|

|

| l

i :
; | Output execute —[Compiled query]«— compile —[Estimated best u term] -
i -
\

¢ T

Figure 1: Schematic representation of our approach and the chapter decomposition

ot s CHAPTET 4 s ot ot

L NE NE NENE N NE R WY R

Contents

Abstracts
General introduction

Contents

I Preliminaries

1 The SPARQL language

1.1 The RDF datamodel,
1.2 The SPARQL query language and the SPARQL-algebra
1.3 SPARQL query evaluators and their optimization

2 The relational model and beyond for graphs queries

2.1 The relational model
2.2 Datalog
2.3 Encoding SPARQL queries into relational query languages

II The p-algebra for the execution of SPARQL queries

3 The p-algebra

3.1 Syntax & Semantics
3.2 Examples of p-algebra termso
3.3 Restriction on p-algebra: constant and linear recursions
3.4 Relationship between p-algebra and existing relational variants . .
3.5 Translation from SPARQL

4 Analysis & transformation of p-algebra terms

4.1 Preliminaries: several examples of terms to be rewritten
4.2 Effects of p-algebra terms oo
4.3 Decomposed fixpointso
4.4 Typing p-algebra terms

14

15

19

...... 21
...... 26
...... 35

39

...... 41
...... 49
...... o1

55

61

...... 63
...... 68
...... 70
...... 72
...... 73

14 CONTENTS
4.5 Normalizing rules for p-algebra termso 96
4.6 Producing rules 100
4.7 Ad-hocrules 104
4.8 Rewriting algorithm oo 105
4.9 Example of rewritingo 107

5 Evaluation of p-algebra terms 111
5.1 General bottom-up evaluation for p-algebra terms 113
5.2 Bottom-Up cost model for p-algebra terms 117
5.3 Single core bottom-up evaluation of p-algebra 119
5.4 Towards a distributed p-algebra evaluator 119

6 Cardinality estimation of p-algebra terms 125
6.1 Summaries 127
6.2 Computing collection summaries representing the solutions of a single TP . . 133
6.3 Optimization of distributed BGP query plans with an over-estimation 135
6.4 Extensions 137

IIT Results & conclusion 139

7 Comparision of our approach with the state of the art 141
7.1 Theoretical comparison of u-algebra bottom-up evaluation and other approaches

ON TECUTSIVE QUETIES v o v v e et e e e e 143
7.2 An experiment for p-algebra bottom-up with a recursive query 147
7.3 Pushing the benchmark further 152
7.4 Efficiency of distributed SPARQL query evaluators 158
7.5 Experimental of SPARQLGX with our cardinality estimation 161

8 Conclusions & Perspectives 167
8.1 Conclusions 167
8.2 Perspectives 169

Appendices 170

Bibliography 171

A Proofs 183
A.1 Proofs of chapter 3 183
A.2 Relationship between p-algebra and existing relational variants 186
A3 Proofs of chapter4 192

B Details of our second benchmark 205

Part 1

Preliminaries

15

Table of Contents

1

The SPARQL language 19
1.1 The RDF datamodel 21
1.2 The SPARQL query language and the SPARQL-algebra 26
1.3 SPARQL query evaluators and their optimization 35
The relational model and beyond for graphs queries 39
2.1 The relational model Lo oL 41
2.2 Datalog 49

2.3 Encoding SPARQL queries into relational query languages 51

CHAPTER 1

The SPARQL language

The semantic web corresponds to an extension of to-
day’s World Wide Web. While the World Wide Web
was designed to enable humans to share information
with each others, the goal of the semantic web is to
share information in a machine-readable format carry-
ing semantic information.

Sharing information via the semantic web allows ma-
chines to reason and process information created from
multiple outside sources in a federated manner. In
the “old” syntactic web, one can create one parser per
source of data and then gather them into a large silo
in order to query them. In the semantic web, one
would simply write a query that would wn turn query
each source for its data and gather the needed data at
run time. There would be no need for a parser per
source as the data would be served in a common unify-
ing language. One could, for instance, imagine a trip
planning system combining flight and train information
extracted from several companies and then coupling that
with landmarks information (using e.g. dbPedia) and
even with some meteorological forecast data. And all of
that without the need to centralize the data.

19

20

CHAPTER 1. THE SPARQL LANGUAGE

In this chapter we present the RDF data model and
the SPARQL query language which are both specifica-
tions from the World Wide Web Consortium (W3C) to
express semantic information on the web and to query
it. We will skip over many aspects of these specifica-
tions as they are large and we will focus on the essential
parts needed for the evaluation of SPARQL queries on
RDF data. We will then look at query evaluators and
their optimization techniques.

1.1. THE RDF DATA MODEL 21

1.1 The RDF data model

The Resource Description Framework (RDF) is a language standardized by the w3c [RCM14].
RDF models knowledge about resources. An RDF dataset is a set of statements where each
statement gives either a relationship between resources or describes a resource. Before diving
into the details of RDF we first need to introduce some terminology.

Serialization and RDF Serialization consists in producing a string representation of typed
data. One of the goal of RDF is the ability for RDF-compatible software to understand
data coming out of other tools therefore a large part of the RDF standard focuses on the
serialization.

This chapter will give some hindsight about this serialization but the details are left to the
official standard and, for the sake of simplicity, after this chapter, we will refer to arbitrary
strings to escape the details of the encoding and focus on the essential challenges.

1.1.1 Terminology

Ressources

The resources described in a RDF dataset can be any object or class that we want to describe.
For instance in a dataset stating that Socrate is human and that human is mortal, All of
Socrate, human and mortal would be resources but the verb is would also be a resource as
it is an entity that could be described. For instance, the dataset could declare that is has
a transitive meaning which here would imply that given Socrate is human and human is
mortal we also have Socrate is mortal.

In an RDF dataset, resources are either represented directly as an IRI or as anonymous
resources and represented as Blank nodes.

Internationalized Resource Identifier (IRI)

An Internationalized Resource Identifier (IRI) is a string of characters that identifies a re-
source. The IRI scheme extends the URI scheme by allowing any unicode character (and not
just ASCII as in the URI scheme).

We refer the reader to the RFC 3987 for a precise description of IRI but as a simplification,
an IRI can be seen as a string of the form scheme:path (e.g. https://www.inria.fr uses
the scheme https and the path is //www.inria.fr).

The reader probably has an intuitive notion of IRI as this format is very similar to the URL
scheme which is used to encode internet addresses but note that an IRI does not necessarily
correspond to an actually internet-accessible address nor that the scheme used has to be
known (even though the schemes http and https are very widely used, in which case the
path often corresponds to a web accessible resource).

Remember that the goal of RDF is to represent knowledge for the semantic web. In order
to do that, we need to be able to identify resources across datasets. Therefore, when the
same IRI 7 is present in two different datasets D;, Dy then the 7 in D; and the ¢ in Dy are
considered to identify the same object.

22 CHAPTER 1. THE SPARQL LANGUAGE

Prefixes

For space and readability reasons, RDF datasets and SPARQL queries often use a set of prefix
mappings. A prefix mapping is a pair (prefix p, iri <i>) and indicates that the strings of
the form p:v is equivalent to its expanded form <iv> (where iv is the concatenation of the
string i with the string v).

In RDF and in SPARQL queries, an IRI should either appear enclosed in angle brackets (of
the form <scheme:path>) or be prefixed (of the form prefix:subpath). In this latter case,
there should be a unique matching prefix (prefix,iri) and thus the prefix:subpath can
be replaced by the concatenation of iri and subpath enclosed in angle brackets (thus <iri
subpath>).

Notice that prefixes are only here for concision and readability purposes as IRI tend to
be long. In fact, prefixes are not even part of the formal RDF data model. A prefixed IRI
should always be treated as its expanded version (and thus a simple way to do just that is
to replace them by their expanded version).

The prefixes we will use in this thesis are described in the following table :

’ Prefix \ Expansion \ Meaning ‘
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# The RDF built-in vocabulary
rdfs http://www.w3.org/2000/01 /rdf-schema# The RDF Schema vocabulary
xsd http://www.w3.org/2001 /XMLSchema# The RDF-compatible built-in XSD types
foaf http://xmlns.com/foaf/0.1/ An RDF vocabulary to link people
ex http://example.org/ A dummy prefix to shorten examples

Blank Nodes

An RDF dataset might include anonymous resources represented as blank nodes. A blank
node is of the form _:subpath where _: designates exactly the string _: while subpath can
be any valid IRI path.

The idea behind blank nodes is to describe resources that exist and have some relations
with other (named or anonymous) resources. For instance if someone wishes to represent
an ordered list of three authors (represented as ex:authorA ex:authorB,ex:authorC) of an
article (represented by ex:paper1) this person could create a node representing this ordered
set with a blank node (e.g. _:abc) and state that paper has been authored by _:abc. The
use of a blank node ensures that there will be no conflict with IRI existing outside of this
datasets.

In contrast with iri, if a blank node b is present in D; and in D,, there is no reason to
suppose b in D and b in Dy are describing the same object and they should be treated as
different.

As explained in the RDF 1.1 recommandation, it is possible to replace blank nodes with
IRI using a skolemnization process. But in order to respect the RDF semantics, we need to
replace blank nodes with IRI that are 1) cannot be used in other datasets , 2) can be identified
unambiguously as blank nodes (as e.g. SPARQL allows to test whether a resource is a blank
node).

Literals

A literal is a string of characters (enclose in a pair of ") eventually adjoined with a tag
language information (concatenated at the end of the string and starting with a @) or tag

1.1. THE RDF DATA MODEL 23

data type (also concatenated at the end of the string but starting with a ~*). The RDF
standard only supports a tag language in a literal when its data type is
http://www.w3.0rg/1999/02/22-rdf -syntax-ns#langString, therefore the data type is
thus often omitted for literals with language information. When there is no datatype nor
language information, the data type is considered to be
http://www.w3.org/2001/XMLSchema#string.

For instance the literal "42""~"xsd:integer represents the string “42” and indicates that
it should be treated as an “xsd:integer” (which are the integers as defined by the XML
standard). The literal "Londres"@fr represents the string “Londres” with the indication
that it is in french and "London"@en represents the string “London” with the indication that
it is written in english.

The values encoded via literals could also be encoded as resources and thus via an IR1. But
some types of things (such as string, integers, dates, boolean) are more easily manipulated
with some type information than with IRI. For instance in SPARQL, the comparison on typed
data will not use the same algorithm to compare value depending on the type of the values
compared (e.g. xsd:boolean, xsd:dateTime, etc.).

Note that it is possible to create custom data types however this is not supported by
all evaluators and thus the types actually used correspond to the types defined by the RDF
standard and whose semantics is imported from the XML standard (and thus their IRI starts
with http://www.w3.org/2001/XMLSchema#).

1.1.2 RDF Triples

RDF datasets represent knowledge through sets of statements. Each of these statements is
an RDF triple. As its name suggests, a triple is composed of three elements (s p o):

e the subject s which designates a resource and thus is either a blank node or an IRI;
e the predicate p which always is an IRI;

e the object o which can by either a resource (blank node or IRI) or a literal.

Predicates can be thought as of predicate in the predicate calculus or in theories of
grammars. The idea is that each predicate p carries a semantic relationship between the
subject s and the object o.

Following the w3C notation, we note Z the set of valid IRI, RDF-B the set of valid blank
nodes names and RDF-L the set of valid literals then these three sets Z, RDF—B and RDF-L
are disjoint and an RDF triple can be seen as an element of (Z URDF — BB) X Z x (Z URDF —
B URDF — L).

Finally, the standard denotes as the set of RDF-terms the set 7 = ZURDF — BURDF — L
(which is also the set of valid objects in an RDF triple). In this view, an RDF triple is an
element of T2 (however, not all elements of 72 qualify as triples).

1.1.3 RDF graphs

A triple can also be seen as a part of labeled directed graph. The triple (s, p,0) links the
node s to the node o via a directed arc labeled with p as depicted below.

24 CHAPTER 1. THE SPARQL LANGUAGE
()
s)

A set of triples {(s1,p1,01),. -, (Sn,Pn,0n)} is thus seen by the RDF standard as a di-
rected labeled multigraph G = (V, E') whose nodes are the subjects and objects (i.e. V =
{s1,...,8,} U{01,...,0,}) and there is an edge per triple (s;, p;, 0;), starting from s; going
to o; labeled with p; (i.e. the edges are E = {s; £5 01,...,5, 2 0n}).

Nodes in RDF graphs are therefore RDF-terms but labels can only be IRI. Note that an
IRI appearing as the label of a transitions (and thus as a predicate) can also be a node of the
graph.

An RDF dataset is aset {G, (< u; >,G1), ..., (< u, >,G,)} where each of the G, Gy, ..., G,
corresponds to an RDF graph and each of the u; is a valid 1R1. The graph G; is named < u; >
while the graph G is the default graph.

1.1.4 An example

Let us consider the following example describing the phylogeny of penguins and tyrannosaurus
and showing that they are not so distant cousin.

ex:tyrex ex:subTaxon ex:saurichien .
ex:tyrex rdfs:type ex:taxon

ex:tyrex rdfs:label "Tyrannosaur"@en .
ex:tyrex rdfs:label "Tyrannosaure"Qfr .

ex:birds rdfs:type ex:taxon .

ex:birds rdfs:label "Aves"

ex:birds ex:subTaxon _:missinglink .
_:missinglink ex:subTaxon ex:saurichien .
_:missinglink rdfs:type ex:taxon .

ex:penguins rdfs:type ex:taxon .
ex:penguins rdfs:label "Sphenisciformes"@en .

ex:penguins ex:subTaxon ex:birds

ex:saurichien rdfs:label "Saurichia'"@en .

Note that we used a blank node (_:missingLink) to represent the existence of a missing
link between birds and saurichias. The same dataset in a graph representation :

1.1. THE RDF DATA MODEL 25

“Tyrannosaure’@fr

A

ex:penguins

odAy:sppa
rdfs:label

rdfs:label

ex:birds : @
&
.. [<b) =
= = 2
§ 4 %
2 s 3
=

¢

ex:subTaxon

ex:saurichias “Tyrannosaur’@Qen

[PqR[-sjp1

“Saurichia”@en

Figure 1.1: Graph representation of our example dataset

1.1.5 Entailment

The RDF technology stack also comes with an ontology mechanism to access data. An
ontology is a set of rules (eventually also encoded in RDF) to deduce new statements implied
by the set of statements. It allows, for instance, to write a set of rules such that an RDF—
equivalent of the statement socrate is mortal can be automatically deduced from the
RDF—equivalents of the statements socrate is human and human is mortal.

The entailment regimes in RDF are very rich and interesting but they are not in the set
of topics that we will cover in this thesis. It does not mean, however, that our method can
not be applied to data with entailment. One of the ways to treat entailment is to have
a pre-processing phase enriching the data with the knowledge discovered by an entailment
regime. If our method does not treat the enrichment part, our query evaluator is obviously
capable of treating enriched data. Another method consists in rewriting the query ¢ that
we want to evaluate on a database using an ontology o into a query ¢, where the semantics
of g, (without ontology) is the semantics of ¢ with the ontology o. Depending on ¢ and o,

26 CHAPTER 1. THE SPARQL LANGUAGE

the resulting query ¢, might be much more complex than ¢ (and may not be expressible in
SPARQL).

1.2 The SPARQL query language and the SPARQL-algebra

The SPARQL acronym stands for SPARQL Protocol and RDF Query Language. SPARQL is, as
its name suggests, a query language for RDF data. SPARQL has been widely adopted since its
standardization by the w3c [HSP13] to query and update RDF data and it is now in its 1.1
recommendation (which is the second major version). In this section we will not present the
whole SPARQL but rather we will present the multiset fragment of the SPARQL—algebra which
is an algebraic representation of SPARQL queries that helps to formally define the semantics
of SPARQL queries.

1.2.1 Definitions

Definition 1. The SPARQL language contains variables (that we will call SPARQL-variables).
The set of valid SPARQL-variable names is noted V and is disjoint with the set T of RDF-

terms. In this manuscript SPARQL—variables will be spaceless strings of characters starting
by 77 or %

The SPARQL standard formalizes query answers as solution mappings whose domain con-
tains only SPARQL-variables (i.e. elements of V) and whose range are RDF terms (i.e. 7).
Solution mappings thus have the type ¥V — T, however, during the computation of a so-
lution mapping, we also have to compute an instance mapping which is a partial mapping
whose domain is the set of blank nodes (i.e. a mapping of type B — 7). In SPARQL-algebra
the combination of such an instance mapping with a solution mapping is called a Pattern
Instance Mapping (therefore a mapping of type V U B — T. As the difference between the
several parts of Pattern Instance Mapping will only appear during the translation, we will call
mappings for all the three types of mappings and remember which part is from the instance
mapping and which part is solution mapping (which is easy since the set of SPARQL—variables
is disjoint with the set of RDF terms).

Definition 2. A binding is a pair (SPARQL-variable, RDF—terms) or (blank node, RDF—
term).

Definition 3. A mapping is a partial function m : VUB — T and the domain of m (noted
dom(m)) is the subset of V U B where m is defined. Mappings have a finite domain.

Alternatively, a mapping can be seen as a finite set of bindings where the SPARQL-
variables and blank nodes in the bindings are all distinct.

Definition 4. Two mappings my and my are said compatible when for all ¢ € dom(my) N
dom(ms) we have my(c) = ma(c).

Given two compatible mappings my and ms we can define my + mo as the union of their
bindings or alternatively as the mapping whose domain is dom(my) +dom(ms) and such that

_)ma(c) when c € dom(my)
(ma +-ma)(e) = {mg(c) otherwise

1.2. THE SPARQL QUERY LANGUAGE AND THE SPARQL-ALGEBRA 27

1.2.2 A first SPARQL Example

This example is based on the RDF dataset presented earlier. We consider the SPARQL query
asking for the name of all taxons and, when available, the name of the parent taxon. This
could be written in SPARQL as:

SELECT ?7name, ?parentName WHERE {
7taxon rdfs:type ex:taxon .
?taxon rdfs:label 7name .
OPTIONAL {
7taxon ex:subTaxon _:parent .
_:parent rdfs:label 7parentName .

3

In this query, there is one blank node _:parent; three variables 7taxon, ?name and
?parentName and 4 constants : ex:taxon, rdfs:type, rdfs:label, and ex:subTaxon. The
solutions of such a query will necessarily be mappings whose domain always contains ?name
and might also comprise a ?parentName.

Against the example dataset of figure 1.1 we have:

A
name | parentName

" Sphenisci formes” | 7 Aves”
"Tyrannosaure” | " Saurichia”
"Tyrannosaur” | ” Saurichia”
2 AU@S”

?Saurichia”

Here “Aves” has a parent taxon (_:missingLink) but it has no name and “Saurichia” does
not have a parent taxon.

1.2.3 Operations

SPARQL queries are evaluated against RDF datasets. As we explained in the RDF presentation,
RDF datasets are composed of several graphs: one default graph and several named graphs.
During the evaluation of SPARQL queries we will maintain a current or active graph that
corresponds to the graph queried in the RDF dataset. At first, the active graph will be the
default graph of the RDF dataset but the SPARQL standard also allows to change this active
graph to one of the named graphs.

We now present the multiset fragment of the SPARQL-algebra along with its semantics.
The fragment corresponds to the SPARQL—algebra where we removed the operators: Exists,
ToList, OrderBy, Slice. We choose this fragment because it allows us to present only the
multiset semantics of SPARQL: the last three removed operators (ToList, OrderBy, Slice)
operate on a list semantic (a multiset where the elements are ordered) while the Exists
operator has a complex semantics (it triggers the evaluation of subqueries) but it has been
shown that SPARQL queries can be rewritten without this Exists (as shown in [KKG17]) even
though this rewriting is non-trivial.

28 CHAPTER 1. THE SPARQL LANGUAGE

Triple Patterns

The building blocks of the SPARQL queries are Triple Patterns (TP). Similarly to an RDF
triple, a TP is composed of three parts :

e a subject s that is either an RDF—term or a SPARQL—variable (i.e. s € VUT) ;
e a predicate p that is either an IRI or a SPARQL-variable (i.e. p € VUT) ;
e an object o that is either a SPARQL—variable or an RDF-term (i.e. 0 € VUT).

Note that there is a discrepancy between SPARQL TP and RDF triples, the former allowing
subjects to be literals while the latter does not. A TP (s,p,0) is an element of (7 U V) X
(ZUV) x (T UV), but, as for RDF triples, it can also be seen as an element of (7 U V)? (but
not all elements of (7" U V)3 are valid SPARQL TP).

let G be the current graph, a solution mapping m is solution of T'P(s, p, 0) when dom(m) =
{s,p,0} N (BUY) and m(s) m(p) m(o) is a triple of G (for m(x) = = when = € dom(m)
and m(z) = z otherwise). Note that blank nodes that appear in queries acts just like
SPARQL~-variables (except that they are not included in the output and cannot be used in
expressions).

Property Paths

Property Paths (PP) are a novelty of the 1.1 version of the SPARQL standard. A TP can be
seen as a mean of expressing the connection between two nodes in a graph (where both nodes
and the label of the edge can also be variables). PP extend TP by allowing the predicates
to be Regular Path Expressions.
The syntax for these Regular Path Expressions is the following:
u an IRI
r1/ry the concatenation of two paths
r1|re the alternative choice between two paths
r~1 areversed path
{:dy---:4,} anegated property set
{:41--:i,} a property set
(any path of length one labeled by something else than one of the i;)
r? optional path
the transitive closure of the path r
r* the transitive reflexive closure of the path r
Let G be the active graph, a solution mapping m is a solution of PP (s r 0) when dom(m) =

{s,0}N(VUB) and there is a path m(s) = p; s e i LN pre1 = m(o) in G such that the
sequence of labels [; ... [, matches the regular path expression r. Note that as there might
be several paths from m(s) to m(o) the mapping m might be present more than once as
explained in the paragraph multiset semantics of Property Paths.

For SPARQL, blank nodes appearing in the query play a special role but without an
entailment regime, they act as a form of local variable that is not included in the output (see
BGP below).

Technically, PP are not an extension of TP since variables cannot occur in the predicate
of a PP. However we can allow the predicate to be either a variable or a regular path query
(constant are a special case of regular path queries) and a PP that strictly extend the TP.

1.2. THE SPARQL QUERY LANGUAGE AND THE SPARQL-ALGEBRA 29

A TP has a multiset semantics (as all others SPARQL operators) but each assignment of
variables and blank nodes either appear zero or once. That is why, TP can be evaluated
under a set semantics.

Example For instance on the graph of section 1.1.4, we can ask for the pairs of ?7childTaxon,
7ancestorTaxon using PP(?childTaxon ex:subTaxon™ 7ancestorTaxon) or we can even
ask for the label of ancestor taxons : PP(?7taxon ex:subTaxon®/rdfs:label ?label) which
gives us:

7taxon ?label
ex:saurichien "Saurichia"Qfr
ex:penguins | "Sphenisciformes" @Qen
ex:penguins "Aves"@en
ex:penguins "Saurichia"@en
ex:birds "Aves'"@en
ex:birds "Saurichia"@en
ex:tyrex "Tyrannosaure" Qfr
ex:tyrex "Tyrannosaur" @Qen
ex:tyrex "Saurichia"@en
b0 "Saurichia"@en

Note that the blank node _:missingLink has been renamed to

:1. This is perfectly

legal and normal as blank node names are always relative to a dataset.

The multiset semantics of Property Paths During the elaboration of the standard,
Property Paths had a multiset semantics. However, such semantics create problems on
property paths such as: ?from (:a)* ?to. Indeed, how many times a given assignment of
(?from, 7to) such be included in the result? Loops create an obvious problem but even
without loops counting the number of paths is very hard. To solve this problem the standard
imposes that all the operators except | and / have a set semantics (when | and / are nested
inside another operator they also fall back to set semantics).

To simplify the set vs multiset problem of PP, we can transform patterns (r{|ry) and
(r1/72) appearing on top using Union and Join (described below). After this transformation
all PP can be evaluated under the set semantics without changing the semantics.

A pattern A (r1|re) B is translated into Union(A ry B, A ry B) and a pattern A (/1) B
into Join(A ry _:tmp, _:tmp o B) with _:tmp a new blank node name not appearing in the
query.

For instance to look for the pairs of taxons that are related we can use the property path
7A ex:subTaxon*/(ex:subTaxon™!)* ?B which is equivalent to 7A ex: subTaxon* _: commonAncestor
and _:commonAncestor (ex:subTaxon!)* ?B. Here, a mapping for (?A, ?B) will appear as
many times as there are common ancestors.

Join

Given two SPARQL—algebra terms ¢; and ¢, we can combine them through a Join operator with
Join(ty,t3). For any pair of elements e;, e5 solutions of ¢; and ¢y such that e; is compatible
with ey then e; + ey is a solution of Join(tq,ts).

30 CHAPTER 1. THE SPARQL LANGUAGE

Note that this definition is on multisets. A mapping is thus solution as many times as
there are pairs producing it in the solutions of ¢; and 5.

Union

The operator Union(ti,ty) simply refers to the multiset union. A mapping m occurs in the
solutions of Union(t,ty) when it occurs as a solution of ¢; or t5 and the number of occurrences
of m in the solutions of Union(t1,ts) is the sum of the number of occurrences in the solutions
of t; and the solutions of t,.

Note that the mappings solution of a PP all share the same domain which is the set of
variables appearing in the PP. And the mappings solutions of join of two (or more) PP also
share the same domain (which is the set of variables appearing in at least one of the PP).
However this is not the case for union.

Project

Given a mapping m, its projection on the set s C BUV is the mapping m’ whose domain is
dom(m') = dom(m) N s and where the remaining values are unchanged, i.e. Yz € dom(m’) :
m'(x) = m(x).

The project operator Project(C,t) changes the mappings solutions of ¢ by projecting them
onto the set C.

Basic Graph Patterns

A Basic Graph Pattern (BGP) is a set of PP. A BGP((s1 p1 01)...(Sn pn 0n)) can be seen
as syntactic sugar for the join of individual PP where we keep in the domain of solution
mappings only the variables (and not the blank nodes). In algebraic terms, it gives us
BGP(sy p1 01)...(Sn Pn 0n)) = (Project(V, Join(PP(sy p1 01),..., PP(s, pn 0,)))) where
V ={s1,p1,01, -+, 80, Pn,0nt N V.

Example We can use blank nodes and PP to capture the pairs of animals coming from the
same taxon (possibly all animals if our dataset is complete):

BGP({ PP(7a subTaxon* _:commonAncestor),
PP(7b subTaxon* _:commonAncestor),
PP(_:commonAncestor rdfs:type ex:taxon)})

Without the last PP all nodes (including the literals) would be included as solutions
since ex:subTaxon* is a star operation that matches all pairs of twice the same node ap-
pearing in the RDF graph. Also with this query, the solution 7a = _:penguins and 7b =
:penguins would appear thrice as they have three common ancestors (:penguins, _:birds
and ex:saurichias) and one might want to ask to remove pairs of the same animals using
filters.

Expressions

SPARQL includes a language of expressions. Expressions are used in filter condition, in Eztend
and in aggregates (see below). We present the main types of expressions and refer the reader
to the SPARQL standard for a complete description.

1.2. THE SPARQL QUERY LANGUAGE AND THE SPARQL-ALGEBRA 31

The expressions are inspired by the syntax and semantics of expressions in the XQuery
standard and thus operate on the built-in types of the namespace xsd such as xsd:integer,
xsd:double, xsd:boolean, xsd:datetime, etc..

The expressions contain the standard operations on the above types (e.g. addition and
multiplication for the numeric types and time manipulation for the xsd:datetime). The
expressions can also be comparison (equality and inequality tests) comparing either two
columns of the mappings or a column of the mappings with a constant. The inegality com-
parisons in SPARQL depend on the type for the literals. For the literal datatype xsd:integer
or xsd:numeric, SPARQL-algebra will rely on the usual number comparison, for the literals
typed xsd:DateTime it will rely on a datetime comparison, etc.

Expressions can also be one of the built-in tests. The most important ones being: bnd(?c)
to test whether the mappings contain a binding for the SPARQL—variable ?c, isIRI(7c),
(respectively isBlank(?c) and isLiteral(?c)) testing whether the value bound by ?c is an IRI
(respectively a blank node or a literal). But we can also extract the language tag of a literal
or get its datatype.

Expressions are themselves typed and can be in turn composed. For instance. instead
of comparing dire