1 Reducing from CNF-SAT to HAMPATH

A path from s to t in a graph G is hamiltonian when the path goes through all nodes exactly once. The HAMPATH problem is defined as:

 $HAMPATH = \{(G, s, t) \mid \text{ there exists an hamiltonian path in the oriented graph } G \text{ from } s \text{ to } t\}$

Question 1. Show that HAMPATH is \mathcal{NP} -complete.

Suggestion: start from a CNF-SAT formula with k clauses and l variables. Build a graph with (for i a variable and j a clause): 3 nodes x_i^j , \bar{x}_i^j et n_j^i ; 2 nœuds s_i and n_i^0 ; 1 node C_j plus one node s_{l+1} using the following gadgets:

Question 2. Show that the HAMPATH problem stays \mathcal{NP} -complete if we remove the orientedness of the graphs considered.

2 Time hierarchy theorem

In this section, we will consider 2-tape deterministic Turing machines. We select a coding $\langle M \rangle$ for the Turing machine M. For instance, $\langle M \rangle$ codes the states with words of $\{0,1\}^*$, the tape alphabet with words of $\{\alpha,\beta\}^*$, heads direction with $\{<,>,_\}^2$. A TM is then represented with a sequence of transitions for each state. For the state e, we represent it as $e|a_1, b_1, c_1, d_1, e_1, f_1, \ldots a_k, b_k, c_k, d_k, e_k, f_k|$ where the $e, (e_i)_i$ are the states, the $(a_i)_i, (b_i)_i, (c_i)_i, (d_i)_i$ are all words in both tape and the $(f_i)_i$ are the directions. a (resp. b) is the letter read on the first tape (resp. second tape) during the transition and c (resp. d) is the letter written on the first tape (resp. second tape).

Définition 1. The set TIME(f(n)) corresponds to the set of problems for which there exists a Turing machine deciding them in less than f(n) computing steps over inputs of size n.

In the same manner that we say that sorting can be done in $O(n \times ln(n))$ (and thus omitting to say "when the input has size n", we always write TIME(f(n)) but this should be read as $TIME(n \to f(n))$ because the n represents the size of the input.

In the remaining part of the TD, when needed, you can use the linear speedup theorem stating that for all g and all $\epsilon > 0$ fixed, we have $TIME(g(n)) \subseteq TIME(n+2+\epsilon g(n))$.

Définition 2. A function f is time constructible when there exists a machine M taking 1^n as input and producing f(n) in time f(n).

The time hierarchy theorem states that when f is a time constructible function then:

$$TIME\left(o\left(\frac{f(n)}{logf(n)}\right)\right) \subsetneq TIME(f(n))$$

We will demonstrate here a lighter version of the theorem: $TIME(f(n)) \subsetneq TIME(f(2n+1)^3)$ with $n^3 \le f(n)$. For f time constructible, we define $Halt_f = \{\langle M \rangle \# x \mid M \text{ accepts } x \text{ in } f(|x|) \text{ steps}\}.$ Question 3. Justify that $Halt_f \in TIME(f(n)^3)$.

Let us suppose that $Halt_f \in TIME\left(\frac{f(\lfloor n/2 \rfloor)}{2}\right)$. Let K be a TM deciding $Halt_f$ in time $f(\lfloor n/2 \rfloor)/2$, we can build D_K taking $\langle M \rangle$ as input and running K on $\langle M \rangle \# \langle M \rangle$. D_K accepts when K refuses and refuses when K accepts.

Question 4. Justify that D_K can be built such that $D_K \in TIME(f(n))$.

Question 5. Justify that D_K can not exists using a diagonalization argument.

Question 6. Conclude that $TIME(f(\lfloor n/2 \rfloor)/2) \subsetneq TIME(f(n)^3)$.

Question 7. Show that $P \subsetneq EXPTIME \subsetneq 2 - EXPTIME$.

We recall: $P = \bigcup_{k \in \mathbb{N}} TIME(n^k), EXPTIME = \bigcup_{k \in \mathbb{N}} TIME(2^{n^k}), 2 - EXPTIME = \bigcup_{k \in \mathbb{N}} TIME(2^{2^{n^k}})$

3 An *EXPTIME*-complete problem

Question 8. Justify that $f(x) = 2^x$ is time constructible and show that $Halt_f \in EXPTIME$.

Question 9. Let $L \in EXPTIME$, show that L is polynomial time reductible to $Halt_f$ and thus prove that $Halt_f$ is EXPTIME-complete.

4 A *PSPACE*-complete problem

The set of Quantified Boolean Formulæ (QBF) is defined by induction as:

- all propositional variables are QBF;
- if ϕ is QBF then $\neg \phi$ also is QBF;
- if ϕ and ψ are QBF then $\phi \wedge \psi$ is QBF
- if ϕ is QBF and p is a propositional variable then $\forall p\phi$ and $\exists p\phi$ are QBF

QBF are equipped with their usual Boolean valuation. The language of TQBF is the language of QBF evaluating to true.

Question 10. Show that TBQF is PSPACE-complete.

Suggestion for PSPACE hardness: start from $L \in PSPACE$. Show that L is decided by K for which it exists $P \in \mathbb{N}[X]$ such that on an input of size n, K decides in time $2^{P(n)}$ and space P(n). Reduce L to TQBF. Encode the state of K and its memory with a P(n) uplet of $\{0,1\}$ and build a formula $\Phi(c_1, c_2, t)$ describing whether K can move from the state c_1 to c_2 in time 2^t (use a fast exponentiation).