
TD9 Langage formels, calculabilité et complexité

1 Reducing from CNF-SAT to HAMPATH

A path from s to t in a graph G is hamiltonian when the path goes through all nodes exactly once. The
HAMPATH problem is defined as:

HAMPATH = {(G, s, t) | there exists an hamiltonian path in the oriented graph G from s to t}

Question 1. Show that HAMPATH is NP-complete.

Suggestion: start from a CNF-SAT formula with k clauses and l variables. Build a graph with (for i a variable
and j a clause): 3 nodes xji , x̄

j
i et nij; 2 nœuds si and n0i ; 1 node Cj plus one node sl+1 using the following

gadgets:

n0i x1i x̄i
1 n1i

. xki x̄i
k nki

si

si+1

(a) Variable gadget

xji x̄i
j

Cj

(b) Gadget for xi used in Cj

xji x̄i
j

Cj

(c) Gadget for x̄i used in Cj

Question 2. Show that the HAMPATH problem stays NP-complete if we remove the orientedness of the
graphs considered.

2 Time hierarchy theorem

In this section, we will consider 2-tape deterministic Turing machines. We select a coding 〈M〉 for the Turing
machine M . For instance, 〈M〉 codes the states with words of {0, 1}∗, the tape alphabet with words of {α, β}∗,
heads direction with {<,>, }2. A TM is then represented with a sequence of transitions for each state. For
the state e, we represent it as e|a1, b1, c1, d1, e1, f1, . . . ak, bk, ck, dk, ek, fk| where the e, (ei)i are the states, the
(ai)i, (bi)i, (ci)i, (di)i are all words in both tape and the (fi)i are the directions. a (resp. b) is the letter read
on the first tape (resp. second tape) during the transition and c (resp. d) is the letter written on the first tape
(resp. second tape).

Définition 1. The set TIME(f(n)) corresponds to the set of problems for which there exists a Turing machine
deciding them in less than f(n) computing steps over inputs of size n.

In the same manner that we say that sorting can be done in O(n × ln(n)) (and thus omitting to say “when
the input has size n”, we always write TIME(f(n)) but this should be read as TIME(n→ f(n)) because the
n represents the size of the input.
In the remaining part of the TD, when needed, you can use the linear speedup theorem stating that for all g
and all ε > 0 fixed, we have TIME(g(n)) ⊆ TIME(n+ 2 + εg(n)).

Définition 2. A function f is time constructible when there exists a machine M taking 1n as input and
producing f(n) in time f(n).

louis.jachiet@ens.fr https://louis.jachiet.com/tps.html December the 14th, 2017

TD9 Langage formels, calculabilité et complexité

The time hierarchy theorem states that when f is a time constructible function then:

TIME

(
o

(
f(n)

logf(n)

))
(TIME(f(n))

We will demonstrate here a lighter version of the theorem: TIME(f(n)) (TIME(f(2n+1)3) with n3 ≤ f(n).
For f time constructible, we define Haltf = {〈M〉#x |M accepts x in f(|x|) steps}.
Question 3. Justify that Haltf ∈ TIME(f(n)3).

Let us suppose that Haltf ∈ TIME

(
f(bn/2c)

2

)
. Let K be a TM deciding Haltf in time f(bn/2c)/2, we can

build DK taking 〈M〉 as input and running K on 〈M〉#〈M〉. DK accepts when K refuses and refuses when
K accepts.

Question 4. Justify that DK can be built such that DK ∈ TIME(f(n)).

Question 5. Justify that DK can not exists using a diagonalization argument.

Question 6. Conclude that TIME(f(bn/2c)/2) (TIME(f(n)3).

Question 7. Show that P (EXPTIME (2− EXPTIME.

We recall: P =
⋃

k∈N TIME(nk), EXPTIME =
⋃

k∈N TIME(2n
k
), 2− EXPTIME =

⋃
k∈N TIME(22

nk

)

3 An EXPTIME-complete problem

Question 8. Justify that f(x) = 2x is time constructible and show that Haltf ∈ EXPTIME.

Question 9. Let L ∈ EXPTIME, show that L is polynomial time reductible to Haltf and thus prove that
Haltf is EXPTIME-complete.

4 A PSPACE-complete problem

The set of Quantified Boolean Formulæ (QBF) is defined by induction as:

• all propositional variables are QBF;

• if φ is QBF then ¬φ also is QBF;

• if φ and ψ are QBF then φ ∧ ψ is QBF

• if φ is QBF and p is a propositional variable then ∀pφ and ∃pφ are QBF

QBF are equipped with their usual Boolean valuation. The language of TQBF is the language of QBF
evaluating to true.

Question 10. Show that TBQF is PSPACE-complete.

Suggestion for PSPACE hardness: start from L ∈ PSPACE. Show that L is decided by K for which it
exists P ∈ N[X] such that on an input of size n, K decides in time 2P (n) and space P (n). Reduce L to TQBF .
Encode the state of K and its memory with a P (n) uplet of {0, 1} and build a formula Φ(c1, c2, t) describing
whether K can move from the state c1 to c2 in time 2t (use a fast exponentiation).

louis.jachiet@ens.fr https://louis.jachiet.com/tps.html December the 14th, 2017

