1 Context-free grammars

Exercice 1. Let us consider the following grammar on the alphabet $\{x, y, +, -, *\}$:

$$E \to +EE \mid *EE \mid -EE \mid x \mid y$$

- 1. Find the leftmost and the rightmost derivations for the string + * -xyxy.
- 2. Show that this grammar in unambiguous.
- 3. Find a PDA for this grammar.

Exercice 2.

Using the pumping lemma show that the following languages are not CFG :

1. $\mathcal{L}_0 = \{a^i b^j c^k \mid i < j < k\}$ 2. $\mathcal{L}_1 = \{a^n b^n c^m \mid n \le m \le 2n\}$ 3. $\mathcal{L}_2 = \{a^{2^n} \mid n \in \mathbb{N}\}$ 4. $\mathcal{L}_3 = \{a^{n^2} \mid n \in \mathbb{N}\}$

2 Chomsky Normal Form (CNF)

Definition 1. We recall that a grammar in a CNF when all the production rules are :

 $A \to BC \quad or \quad A \to a \quad or \quad S \to \epsilon$

with $B \neq S$ and $C \neq S$ where S is the start symbol.

Exercice 3. Let $G = (\Sigma, N, P, S)$ be a CFG. We suppose that S never appears in the right side of a production rule, how can you eliminate all the production rules of the form $A \to \epsilon$ (except eventually $S \to \epsilon$) from G?

Exercice 4. Devise a method to transform production rules into CNF form, for the following shapes of production rules (we suppose that S does not appear) :

- 1. $A \rightarrow bC$
- 2. $A \rightarrow Bc$
- 3. $A \rightarrow bc$
- 4. $A \rightarrow BCD$
- 5. $A \to \alpha_1 \alpha_2 \alpha_3$ with $\alpha_i \in \Sigma \cup N$
- 6. $A \to \alpha_1 \dots \alpha_p$ with $p \ge 3$
- 7. $A \rightarrow B$

Exercice 5. Devise a CNF equivalent to the following grammar :

S	\rightarrow	CSC	aB
C	\rightarrow	$B \mid$	S
В	\rightarrow	$b \mid$	ϵ

Exercice 6. Devise a polynomial time algorithm (in the size of word and the grammar) recognizing when a word belongs to a CNF grammar.