1 Exemples de Machines de Turing

Exercice 1. Soit Σ un alphabet de la bande (telle qu'elle est en entrée) avec # marquant la fin du mot d'entrée. Donner des Machines de Turing pour les langages suivants :

- $-L_1 = \{ y \ rev(y) \mid y \in \Sigma^* \}$
- $-L_2 = \{yy \mid y \in \Sigma^*\}$
- L^* pour L un langage récursivement énumérable reconnu par une machine de Turing M qui ne lit pas avant le premier caractère et efface le contenu de sa bande avant de terminer.

Exercice 2. On suppose que les entiers sont écrits en binaire. Les entrées sorties sont faites sur la bande qui contient k nombres. Pour k nombres, la bande est $((0^*1^*)^*\#)^k$ (k fois des 0 et 1 suivis de #). Décrire des machines de Turing pour réaliser les opérations suivantes (à chaque fois la bande de fin doit contenir un nombre, c'est à dire des 0 et des 1 suivis de #):

- 1. passer de petit-boutien à grand-boutien (et vice-versa);
- 2. calculer la somme de deux entiers;
- 3. étant donnés deux machines M_1 et M_2 qui calculent deux fonctions f_1 et f_2 , donner un machine qui calcule $f_2 \circ f_1$.

2 Stabilité des langages récursivement énumérables, décidables, etc.

Soient A, B des langages décidables et C et D des langages récursivement énumérables.

Exercice 3. Pour chacune des paires (X,Y) parmi (A,B), (B,C), (C,D) et (D,A) est-ce que $L_{X,Y}$ est nécessairement décidable ou énumérable pour les langages suivants :

- 1. $L_{X,Y} = X \cap Y$
- 2. $L_{X,Y} = X \cup Y$
- 3. $L_{X,Y} = X \setminus Y$

Exercice 4. Montrer que si X et \bar{X} sont énumérables alors X est décidable.

3 Machines de Turing exotiques

- Une machine à k piles est une machine de Turing avec une bande d'entrée et k bandes de travail, où les bandes de travail sont remplacées par des piles;
- une machine à file est une machine de Turing avec une bande d'entrée et une bande de travail, où les bandes de travail sont remplacées par des files : on peut ajouter des éléments part la gauche et les lire par la droite;
- une machine à k compteurs est une machine à k piles où l'alphabet de pile est $\{B,Z\}$ et Z est un symbole de fond de pile. Un entier i peut-être stocké dans une pile en comptant le nombre de symboles B. On peut incrémenter, décrémenter le compteur et tester si le compteur est vide (symbole Z en tête de pile).
- 1. Montrer qu'une machine de Turing est équivalente à une machine à deux piles.
- 2. Montrer qu'une de Turing est équivalente à une machine à une file.
- 3. Montrer qu'une machine à une pile peut-être simulée par une machine à deux compteurs.
- 4. Montrer qu'une machine de Turing est équivalente à une machine à deux compteurs.