1 Grammaires non contextuelles

Exercice 1. Considérons la grammaire suivante sur l'alphabet $\{x, y, +, -, *\}$:

$$E \rightarrow +EE \mid *EE \mid -EE \mid x \mid y$$

- 1. Trouver les dérivations gauches (leftmost) et droites (rightmost) ainsi qu'un arbre de dérivation pour la chaîne +*-xyxy.
- 2. Prouver que cette grammaire est non-ambiguë.
- 3. Trouver un automate à pile pour cette grammaire.

Exercice 2. En utilisant le lemme d'Ogden ou le lemme de pompage, montrer que les langages suivants ne sont pas algébriques :

- 1. $\mathcal{L}_0 = \{a^i b^j c^k \mid i < j < k\}$
- 2. $\mathcal{L}_1 = \{a^n b^n c^m \mid n \le m \le 2n\}$
- 3. $\mathcal{L}_2 = \{a^{2^n} \mid n \in \mathbb{N}\}$
- 4. $\mathcal{L}_3 = \{a^{n^2} \mid n \in \mathbb{N}\}$

2 Forme Normale de Chomsky (CNF)

Definition 1. On rappelle qu'une grammaire est sous forme normale de Chomsky quand toutes ses productions sont de la forme :

$$A \to BC$$
 ou $A \to a$ ou $S \to \epsilon$

avec $B \neq S$ et $C \neq S$ où S est le symbole initial.

Exercice 3. Soit $G = (\Sigma, N, P, S)$ un grammaire algébrique. On suppose que S n'apparaît jamais à droite d'une règle de production, comment éliminer toutes les transitions $A \to \epsilon$ (sauf éventuellement $S \to \epsilon$) d'une grammaire?

Exercice 4. Proposer des règles pour transformer les productions suivantes en CNF (on suppose que S n'apparaît pas):

- 1. $A \rightarrow bC$
- 2. $A \rightarrow Bc$
- 3. $A \rightarrow bc$
- 4. $A \rightarrow BCD$
- 5. $A \to \alpha_1 \alpha_2 \alpha_3$ avec $\alpha_i \in \Sigma \cup N$
- 6. $A \to \alpha_1 \dots \alpha_p$ avec $p \ge 3$
- 7. $A \rightarrow B$

Exercice 5. Proposer une grammaire CNF équivalente à la grammaire suivante :

Exercice 6. Proposer un algorithme de temps polynomial (en la taille cumulée du mot et de la grammaire) qui reconnaît si un mot appartient à une grammaire CNF.