Find a deterministic tree automata for the following languages:

Exercise 1. The words over the alphabet $\{a, b\}$ containing the factor $a a b$ or $a a a b$.
Exercise 2. The words over the alphabet $\{a, b\}$ containing an even number of a and an odd number of b.
Exercise 3. The words over the alphabet $\{a\}$ with a length that is a multiple of 3 .
Exercise 4. For all $d \in \mathbb{N}$, the words over the alphabet $\{a\}$ with a length that is a multiple of d.
Exercise 5. The binary representation of even integers. Integer are positive and the numbers are given in the big-endian order (i.e. natural order: 101010 is 42).

Exercise 6. For all $d \in \mathbb{N}$, the binary representation of multiples of d.
Exercise 7. For all $d \in \mathbb{N}$ the binary representation of numbers of the numbers $c+k \times d$ for $k \in \mathbb{N}$.

Given a regular language \mathcal{L} prove that the following languages are also regular:
Exercise 8. $\operatorname{Init}(\mathcal{L})=\{u \mid \exists v: u v \in \mathcal{L}\}$
Exercise 9. $\operatorname{Min}(\mathcal{L})=\{w \in \mathcal{L} \mid \nexists u \in \mathcal{L}: u$ strict prefix of $w\}$
Exercise 10. $\operatorname{Max}(\mathcal{L})=\{w \in \mathcal{L} \mid w u \in \mathcal{L} \Rightarrow u=\epsilon\}$
Exercise 11. $\operatorname{Cycle}(\mathcal{L})=\{u v \mid v u \in \mathcal{L}\}$
Exercise 12. $\frac{1}{2} \mathcal{L}=\{u \mid \exists v: u v \in \mathcal{L}$ and $|v|=|u|\}$

