Midterm FORMAL LANGUAGES, COMPUTABILITY AND COMPLEXITY

1 Pumping Lemmas

1.1. Lgp, is regular if and only if it is unary.
1.1.1) If at least two of a, b, ¢ are zero, then (091°2¢)* is a regular expression recognizing Lap.c-

1.1.2) We show that if at least two of a,b,c are non-zero, then L, . is not regular. Let n be the
pumping length and take w := 09"1°"2" € L, ;.. We can decompose w into xyz with |zy| < n
and |y| > 1 such that xy’z is in the language for all i € N. Since |xy| < n, string y is composed
of Os only when a # 0, and 1s only otherwise (a and b cannot be both zero). We pump down and
look at wz € Lgpc. If y has Os only, then |wz|g < an but still |wz|; = bn and |wz|s = en. Since
a # 0 and either b or ¢ is non-zero, xz is not of the correct form. Thus zz is not in the language,
a contradiction. If y has 1s only, then |wz|p = 0 = an but |wz|; < bn and |wz|2 = cn. In this case
both b and ¢ are non-zero. Once again zz is not of the correct form, which is a contradiction.

1.2. Lgp, is context-free if and only if it is binary.

1.2.1) If at least one of a, b, c is zero (say, a = 0), then S — 1° S 2¢ | ¢ is a context-free grammar that
generates L p .

1.2.2) We show that if a,b,c are all non-zero, then L, . is not context-free. Let n be the pumping
length and take z := panqbnocen ¢ Lype. We can decompose z into wvwzy with [vwz| < n and
lvz| > 1 such that uvwz'y is in the language for all i € N. Since [vwz| < n, string vwz spans
across at most two letters (since a, b, ¢ are all non-zero). That is, vwz misses either Os or 2s. We
pump down and look at uwy € Lq .. Suppose vwz misses 0s. Since |vz| > 1, string va has a 1
or a 2. But then |uwy|p = an and either [uwyly < bn or |uwy|z < c¢n. Thus uwy is not in the
language, a contradiction. Now suppose vwz misses 2s. Since |vx| > 1, string vz has a 0 or a 1.
But then |uwy|e = cn and either |uwylp < an or |uwy|; < bn. Again, this means uwy is not in
the language.

(Alternatively use closure under the homomorphism (0%, 1%,2¢) +— (0, 1,2), and the facts that 0™1" is not
regular and 0"1™2" is not context-free.)

2 A Game of Dominoes

2.1. The language of dominoes is regular since it is ¥* \ U(i,j)e g 2Niga* where F' is the set of forbidden
pairs (u,v) where r(u) = 1 Al(v) =2 or r(u) = 2Al(v) = 1. These pairs are F' = {2,5,8} x {7,8,9} U
{3,6,9} x {4,5,6}.

2.2. We simulate a computation of the parity using an NFA with two states (even and odd). It is an NFA
because an encouter with a joker can move the automaton to both states. The automaton below
accepts the empty sequence but by removing a single value the language stays regular.

1,2,3,4,5,7,9 1,2,3,4,5,7,9

1,2,3,4,6,7,8
start —(even odd

2.3. We simulate the computation top — 3 x bottom. After each domino is read, we consider the reminder
which is ¢ — 3 x b where t is the top row read and b is the bottom read. Let r be the current reminder
(ie., r =tg---t; —3 X bg---b;). Then the reminder after reading Z’i is 2r + t;p1 — 3 X biy1. The

effects of the domino i on the reminder r is described by f(r,i) where

fr,1y=2r, f(r,2)=2r-3, f(r,3)=2r+1, f(rd)=2r—2.

Midterm 3 hours November the 23rd 2017

Midterm FORMAL LANGUAGES, COMPUTABILITY AND COMPLEXITY

Our automaton has states r = 0, r = 1, r = 2 and the transition function is f. The automaton
starts with a reminder of zero and accepts when the reminder is zero. We only consider the states
{0,1,2} because once outside this set we can never return to it: for k € {—3,-2,1,0} if r < —1 then
2r+k<2r+1<randifr>3then2r+k>r+(r—3)>r.

1 4

start H

3 The Dichotomy Property

Let L be a regular language accepted by a deterministic finite automaton with states Q.

3.1. Clearly if 3w € L : |w| < |Q] then L is non-empty. Now if L is non-empty then we take a word
w = wy ---wg of shortest length in L. A run of the automaton for w will go through the states
qi,--.,q,- Now if k > |Q| we would have that ¢; = ¢; for some ¢ < j. But then wq - - - wjwjqq - - - wy, is
a shorter word that is also in L. Hence k < |Q)].

3.2. We first show that each word w € L with |Q| < |w| can be reduced to a word w’ € L with |u'| <
|lw| < |w'| +|Q] or augmented to a word w” with |w| < |w”|.

A run of the automaton on w = w; -- - w, passes through states qi,...,q,. Since n > |Q|, there are
i < j such that ¢; = ¢;. Consider a pair ¢ < j with minimal j — ¢. By minimality, states ¢;,...,q;—1
are all distinct. Therefore j — ¢ < |Q| and the word w’ = wy - - - wjwj41 - - - wy, is in the language with
|w'| < |w] and |w'| > |w| — |Q|. But the word w” = w; -+ - WiWit1 -+ - Wjwig1 - - WjWj11 - - - Wy 18 also
in the language with |w”| > |w|.

If L is infinite we can find a w € L such that |Q| < |w|. The we can repeatedly reduce w until
Q| < Jw| < 2|Q|. Such a method works because at each step we reduce the length by at least by 1
and at most |@Q|. Conversely, if w € L with |Q| < |w| then by iteratively augmenting w we can create
a sequence wyg = w and w;4 = wg’ such that w; € L for all 4. This shows L is infinite.

4 Intersection of Regular and Context-Free Languages

4.1. Let M = (Q,%,T,0,qo, Z, F) be a PDA recognizing L' and A = (Q’, 2,7, ¢(, F') be a DFA recognizing
L. Then L'NL is recognized by I = (@ xQ", X, T, p, (90, 4), Z, F' x ') where p((q,q'),¢,p) = ((¢.7), P)
with (q,p) = (e, q,p) and 7 = (¢, ¢'). We also extend v with y(¢,¢') = ¢'.

If a word w is recognized by I then decompose a run of the automaton into ((¢;, ¢.), pi, ¢i)ic1..n Where
(gi, q)) is the state after the i-th transition, p; is stack state and ¢; € ¥ U {e} is the transition letter.
Then (g;, pi, ¢i)ie1.n corresponds to a run of M and (gj, ¢;)icN|e,e corresponds to a run of A both of
which accept w. Therefore w € LN L.

Conversely, if w € L N L’ we can find a run (g;, p;, ¢i)ie1.n of M and a run (gj, ¢;)ic1. njize of A both
accepting w. Then (g;,q}), pi, ¢ is a valid run of I accepting w.

5 Boolean Expressions
G := ({Be, St},%, R, Be), where ¥ = {A,—, T, L, (,)} and the production rules R are

Be — St ASt|—-St|St and St— T|L|(Be).

Midterm 3 hours November the 23rd 2017

Midterm FORMAL LANGUAGES, COMPUTABILITY AND COMPLEXITY

5.1. We duplicate each term one for true and one for false (i.e. Be',Bet, StT, Stl) and adapt the rules
in consequence (Be' is the start symbol):

StT — T |(Bel) St+ — 1| (Bet)
Be' — StTAStT|-Stt|stT Bet — StTASth | SttASth| SttAStT | ~StT | St+

5.2. We use one state for the end of computation and one state for the actual computation. The computing
state reduces elements of St to T or L as soon as they are completely read so the stack never contains
’)’ but can contain all other symbols.

e,c—cforece{T,L,— A (}

#False, e — e
start —

(True,)—T
(False,)—L

The rules above exist for each True € { TAT , =L, T } and for each False € { TA L, LA
L, LAT, =T, L}

5.3. A word u is well-parenthesized when all prefixes of u contain more (s than)s and in total u contain
an equal number of them. This well-parenthesized property can be shown by induction on the length
of derivation for terms generated by St and Be. For length 1 this is clear. For the induction step we
see that all rules preserve this criterion and thus the well-parenthesizing of the terms generated.

We use the following lemma: u cannot be well-parenthesized and a strict prefix of (v) where v is well-
parenthesized. All strict, non-empty prefixes of (v) are prefixes of v with a ’(" at the beginning. As
prefixes of v contain more ’(’ then ’)’ the additional ’(* imposes that they are not well-parenthesized.

Let w be a minimal word with two distinct derivations Be = w. We have the following.
e w cannot be a constant.

e If one of the first two productions of w is Be — St — (Be) then w = (w'). Then in the other
derivation the first production cannot be St A St. Otherwise w = wy A wy where wy is a strict
prefix of (w') which is impossible by our lemma.

The other first production also cannot be Be — =St (as w starts with ’(’) and thus all the first
productions are Be — St — (Be) and w = (w’) where w’ should be a smaller counterexample.

e Combining the two facts above, the first production of w cannot be Be — St.

e If one the derivations of w starts with Be — —St since St is a parenthesized word then we cannot
have another derivation of the form Be — St A St otherwise w = —w’ = w1 A wy with wy that is
either a constant or of the form (u) and thus cannot start with —. If all first productions of w
are Be — =St then we have a smaller counterexample w’.

e Therefore all first derivations of w are Be — St A St. Let us consider two: w = w; Awg = w) Awy
where wy, w}, we and wj are all constants (T or L) or well-parenthesized words of the form
(u) (with u also well-parenthesized). If one is a constant so is the other and one cannot be the
strict prefix of the other (by our lemma) thus w; = w] and so we = w) which gives us a smaller
counterexample.

All in all such a minimal counterexample cannot exist thus the grammar is unambiguous.

Midterm 3 hours November the 23rd 2017

Midterm FORMAL LANGUAGES, COMPUTABILITY AND COMPLEXITY

6 Finite Context-Free Languages

6.1. Suppose L is infinite and let zy € L. Suppose we have constructed zg, ..., z;. Since L is infinite, there
is a finite number of words of length smaller than 2|z;|. Therefore we can find a word z;11 such that
|zit1| > 2|z;|. Let S be the subset of L recursively constructed in this manner. By assumption S is
context-free. Let n be its pumping length. Since S is infinite, there is a z € S with |w| > n such that we
can write z = uwvwzry with uv?wr?y € S and 1 < |vz| < n. But then |z| < |[w?wr?y| < |2| +n < 22|,
which contradicts the construction of S. Therefore L is finite.

(Alternatively: there are countably many context-free languages whereas an infinite set has an uncount-
able number of subsets! Thanks to Florent Noisette for this hack!)

7 Universal Automata

7.1. Suppose Ly = {f(D)#w : w € L(D)} is regular and let n be its pumping length. The language
L = {0} is also regular. Let L = L(D). Thus w = f(D)#0%" € Ly. By pumping at the end of w
we have that w = zyz such that |y| > 1, |yz| <n and zz € Ly. But since |zyz| > 2n+1 and |yz| < n,
there exists u such that x = f(D)#u and uyz = 0%". We have zz € Ly < f(D)#uz € Ly < uz € L
but |uz| < |uyz| thus uz cannot be in L and thus Ly cannot be regular.

7.1. Two automata Dy and Dj accept the same language if and only if f(D1)# ~r, f(D2)#. Since there
are infinitely many regular languages, there are infinitely many equivalence classes for ~r,, and thus
Ly cannot be regular by the Myhill-Nerode theorem.

7.1. Let us suppose that Ly is regular and accepted by (Q,%,0,qo, F'). We can find |Q| + 1 distinct
languages Ly, ..., Lg|4+1 accepted by DFAs Dy, ..., D|g|11. By pigeonhole we can find i # j such that
d(qo, f(Di)) = 6(qo, f(D;)). But this implies that for all w, d(qo, f(Di)#w) = 6(qo, f(D;)#w) and
thus D; accepts the same language as D;.

7.1. Suppose that Ly is regular and DFA U = (Q, %, 6, qo, F') accepts Ly. Let U’ := {w | 6(a,w) = b}.
Language U? is regular as it is accepted by (Q, 3,6, a, {b}). Consider now the language Lg := {w |
w#w ¢ Ly}. We have Ly = UfeQ quQ uin Ug(q,#). Hence Lp is regular which implies Lg is
also regular. Let D be a DFA recognizing Lr. We have now obtained a contradiction: f(Dpgr) €
Lr < f(Dr)#f(Dgr) ¢ Ly < f(Dgr) ¢ Lr. (Thanks to Maxime Ramzy and Nicolas Fabiano for this
solution.)

8 Unary Languages

8.1. Let L be a regular unary language and D a DFA recognizing L whose states are () and final states are
F. Let g; be the state of the automaton after reading 0°. We have L = {0 | i € N such that ¢; € F'}.
Since () is finite we have two numbers j < k such that g; = ¢;, and since D is deterministic g, =
Qk+0 = 4j4+0 (mod k—j)- Set ¢ :=k — j. We have:

L= U {Oz} U {OiJrcn ’ n > O}
1<J i<k
q;€F q,€F

%% 8.2 Let L be a context-free unary language and let P be its pumping length. For each m € L with
P < |m| the pumping lemma gives us a decomposition of m into uvwzxy such that uv'wz'y € L for all

i. Since m = 0™l we have {0/} C {olmI+tlevl | | € N} C L. For each 0™ € L with m > P we might
have several such decompositions but for each m we choose a decomposition and fix a k(m) such that

Midterm 3 hours November the 23rd 2017

Midterm FORMAL LANGUAGES, COMPUTABILITY AND COMPLEXITY

0 < k(m) < P and {0™F“5(™) | | € N} C L then we have L = {0/ | 0™l € L} = {w € L | |w| <
P}Up.op {0740 | 1 € N,

This union is infinite and we would like to rewrite it as a finite union. We notice that given m and
m’ we have {0ImI+nxk(m) | e N} C {ol™+7xk(m) | o € N} when m > m/, k(m) = k(m') and
m = m/[k(m)]. Therefore we can have a finite union by looking for each pair (4,) at the smallest m
such that k(m) =i and m = j[i] (notice that 0 < j <i < P).

Let ¢; j := miny,{m > P | (k(m) = 1) A (j = m mod i)} with the convention that ¢; ; := oo when this
set is empty. We now can define L as the following finite union:

L={weLl|lw <P} [J {0 |neN}.

0<j<i<P
Ci,j<°°

Each language on the right hand side is regular, and hence so is their finite union L.

Midterm 3 hours November the 23rd 2017

