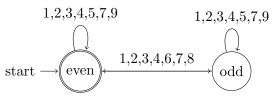
1 Pumping Lemmas

- 1.1. $L_{a,b,c}$ is regular if and only if it is unary.
 - 1.1.1) If at least two of a, b, c are zero, then $(0^a 1^b 2^c)^*$ is a regular expression recognizing $L_{a,b,c}$.
 - 1.1.2) We show that if at least two of a, b, c are non-zero, then $L_{a,b,c}$ is not regular. Let n be the pumping length and take $w := 0^{an} 1^{bn} 2^{cn} \in L_{a,b,c}$. We can decompose w into xyz with $|xy| \leq n$ and $|y| \geq 1$ such that $xy^i z$ is in the language for all $i \in \mathbb{N}$. Since $|xy| \leq n$, string y is composed of 0s only when $a \neq 0$, and 1s only otherwise (a and b cannot be both zero). We pump down and look at $wz \in L_{a,b,c}$. If y has 0s only, then $|wz|_0 < an$ but still $|wz|_1 = bn$ and $|wz|_2 = cn$. Since $a \neq 0$ and either b or c is non-zero, xz is not of the correct form. Thus xz is not in the language, a contradiction. If y has 1s only, then $|wz|_0 = 0 = an$ but $|wz|_1 < bn$ and $|wz|_2 = cn$. In this case both b and c are non-zero. Once again xz is not of the correct form, which is a contradiction.
- 1.2. $L_{a,b,c}$ is context-free if and only if it is binary.
 - 1.2.1) If at least one of a, b, c is zero (say, a = 0), then $S \to 1^b S 2^c | \varepsilon$ is a context-free grammar that generates $L_{a,b,c}$.
 - 1.2.2) We show that if a, b, c are all non-zero, then $L_{a,b,c}$ is not context-free. Let n be the pumping length and take $z := 0^{an} 1^{bn} 2^{cn} \in L_{a,b,c}$. We can decompose z into uvwxy with $|vwx| \leq n$ and $|vx| \geq 1$ such that $uv^i wx^i y$ is in the language for all $i \in \mathbb{N}$. Since $|vwx| \leq n$, string vwx spans across at most two letters (since a, b, c are all non-zero). That is, vwx misses either 0s or 2s. We pump down and look at $uwy \in L_{a,b,c}$. Suppose vwx misses 0s. Since $|vx| \geq 1$, string vx has a 1 or a 2. But then $|uwy|_0 = an$ and either $|uwy|_1 < bn$ or $|uwy|_2 < cn$. Thus uwy is not in the language, a contradiction. Now suppose vwx misses 2s. Since $|vx| \geq 1$, string vx has a 0 or a 1. But then $|uwy|_2 = cn$ and either $|uwy|_0 < an$ or $|uwy|_1 < bn$. Again, this means uwy is not in the language.

(Alternatively use closure under the homomorphism $(0^a, 1^b, 2^c) \mapsto (0, 1, 2)$, and the facts that $0^n 1^n$ is not regular and $0^n 1^n 2^n$ is not context-free.)

2 A Game of Dominoes

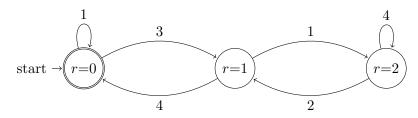
- 2.1. The language of dominoes is regular since it is $\Sigma^* \setminus \bigcup_{(i,j) \in F} \Sigma^* ij\Sigma^*$ where F is the set of forbidden pairs (u, v) where $r(u) = 1 \wedge l(v) = 2$ or $r(u) = 2 \wedge l(v) = 1$. These pairs are $F = \{2, 5, 8\} \times \{7, 8, 9\} \cup \{3, 6, 9\} \times \{4, 5, 6\}$.
- 2.2. We simulate a computation of the parity using an NFA with two states (even and odd). It is an NFA because an encouter with a joker can move the automaton to both states. The automaton below accepts the empty sequence but by removing a single value the language stays regular.



2.3. We simulate the computation top $-3 \times$ bottom. After each domino is read, we consider the reminder which is $t - 3 \times b$ where t is the top row read and b is the bottom read. Let r be the current reminder (i.e., $r = t_0 \cdots t_i - 3 \times b_0 \cdots b_i$). Then the reminder after reading $\frac{t_{i+1}}{b_{i+1}}$ is $2r + t_{i+1} - 3 \times b_{i+1}$. The effects of the domino i on the reminder r is described by f(r, i) where

$$f(r,1) = 2r$$
, $f(r,2) = 2r - 3$, $f(r,3) = 2r + 1$, $f(r,4) = 2r - 2$.

Our automaton has states r = 0, r = 1, r = 2 and the transition function is f. The automaton starts with a reminder of zero and accepts when the reminder is zero. We only consider the states $\{0, 1, 2\}$ because once outside this set we can never return to it: for $k \in \{-3, -2, 1, 0\}$ if $r \leq -1$ then $2r + k \leq 2r + 1 \leq r$ and if $r \geq 3$ then $2r + k \geq r + (r - 3) \geq r$.



3 The Dichotomy Property

Let L be a regular language accepted by a deterministic finite automaton with states Q.

- 3.1. Clearly if $\exists w \in L : |w| \leq |Q|$ then L is non-empty. Now if L is non-empty then we take a word $w = w_1 \cdots w_k$ of shortest length in L. A run of the automaton for w will go through the states q_1, \ldots, q_k . Now if k > |Q| we would have that $q_i = q_j$ for some i < j. But then $w_1 \cdots w_i w_{j+1} \cdots w_k$ is a shorter word that is also in L. Hence $k \leq |Q|$.
- 3.2. We first show that each word $w \in L$ with |Q| < |w| can be reduced to a word $w' \in L$ with $|w'| < |w| \le |w'| + |Q|$ or augmented to a word w'' with |w| < |w''|.

A run of the automaton on $w = w_1 \cdots w_n$ passes through states q_1, \ldots, q_n . Since n > |Q|, there are i < j such that $q_i = q_j$. Consider a pair i < j with minimal j - i. By minimality, states q_i, \ldots, q_{j-1} are all distinct. Therefore $j - i \leq |Q|$ and the word $w' = w_1 \cdots w_i w_{j+1} \cdots w_n$ is in the language with |w'| < |w| and $|w'| \geq |w| - |Q|$. But the word $w'' = w_1 \cdots w_i w_{i+1} \cdots w_j w_{j+1} \cdots w_n$ is also in the language with |w''| > |w|.

If L is infinite we can find a $w \in L$ such that |Q| < |w|. The we can repeatedly reduce w until $|Q| < |w| \le 2|Q|$. Such a method works because at each step we reduce the length by at least by 1 and at most |Q|. Conversely, if $w \in L$ with |Q| < |w| then by iteratively augmenting w we can create a sequence $w_0 := w$ and $w_{i+1} := w_i''$ such that $w_i \in L$ for all i. This shows L is infinite.

4 Intersection of Regular and Context-Free Languages

4.1. Let $M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$ be a PDA recognizing L' and $A = (Q', \Sigma, \gamma, q'_0, F')$ be a DFA recognizing L. Then $L' \cap L$ is recognized by $I = (Q \times Q', \Sigma, \Gamma, \rho, (q_0, q'_0), Z, F \times F')$ where $\rho((q, q'), c, p) = ((\bar{q}, \bar{q}'), \bar{p})$ with $(\bar{q}, \bar{p}) = \delta(c, q, p)$ and $\bar{q}' = \gamma(c, q')$. We also extend γ with $\gamma(\epsilon, q') = q'$.

If a word w is recognized by I then decompose a run of the automaton into $((q_i, q'_i), p_i, c_i)_{i \in 1..n}$ where (q_i, q'_i) is the state after the *i*-th transition, p_i is stack state and $c_i \in \Sigma \cup \{\epsilon\}$ is the transition letter. Then $(q_i, p_i, c_i)_{i \in 1..n}$ corresponds to a run of M and $(q'_i, c_i)_{i \in N \mid c_i \neq \epsilon}$ corresponds to a run of A both of which accept w. Therefore $w \in L \cap L'$.

Conversely, if $w \in L \cap L'$ we can find a run $(q_i, p_i, c_i)_{i \in 1..n}$ of M and a run $(q'_i, c_i)_{i \in 1..n | i \neq \epsilon}$ of A both accepting w. Then $(q_i, q'_i), p_i, c_i$ is a valid run of I accepting w.

5 Boolean Expressions

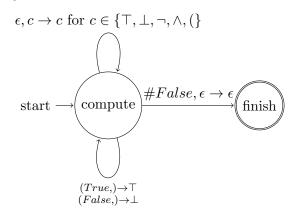
 $G := (\{Be, St\}, \Sigma, R, Be),$ where $\Sigma = \{\land, \neg, \top, \bot, (,)\}$ and the production rules R are

 $Be \to St \wedge St \mid \neg St \mid St \quad \text{and} \quad St \to \top \mid \bot \mid (Be) \ .$

5.1. We duplicate each term one for true and one for false (i.e. $Be^{\top}, Be^{\perp}, St^{\top}, St^{\perp}$) and adapt the rules in consequence (Be^{\top} is the start symbol):

$$\begin{array}{lll} St^{\top} & \rightarrow & \top \mid (Be^{\top}) \\ Be^{\top} & \rightarrow & St^{\top} \wedge St^{\top} \mid \neg St^{\perp} \mid St^{\top} \end{array} \qquad \qquad St^{\perp} \rightarrow & \perp \mid (Be^{\perp}) \\ Be^{\perp} & \rightarrow & St^{\top} \wedge St^{\perp} \mid St^{\perp} \wedge St^{\perp} \mid St^{\perp} \wedge St^{\top} \mid \neg St^{\top} \mid St^{\perp} \wedge St^{\perp} \mid St^{\perp} \mid St^{\perp} \mid St^{\perp} \wedge St^{\perp} \mid St^{\perp} \mid St^{\perp} \mid St^{\perp} \wedge St^{\perp} \mid St^{\perp$$

5.2. We use one state for the end of computation and one state for the actual computation. The computing state reduces elements of St to \top or \bot as soon as they are completely read so the stack never contains ')' but can contain all other symbols.



The rules above exist for each $True \in \{ \top \land \top, \neg \bot, \top \}$ and for each $False \in \{ \top \land \bot, \bot \land \bot, \bot \land \downarrow, \bot \land \top, \neg \top, \bot \}$.

5.3. A word u is well-parenthesized when all prefixes of u contain more (s than)s and in total u contain an equal number of them. This well-parenthesized property can be shown by induction on the length of derivation for terms generated by St and Be. For length 1 this is clear. For the induction step we see that all rules preserve this criterion and thus the well-parenthesizing of the terms generated.

We use the following lemma: u cannot be well-parenthesized and a strict prefix of (v) where v is well-parenthesized. All strict, non-empty prefixes of (v) are prefixes of v with a '(' at the beginning. As prefixes of v contain more '(' then ')' the additional '(' imposes that they are not well-parenthesized.

Let w be a minimal word with two distinct derivations $Be \xrightarrow{*} w$. We have the following.

- w cannot be a constant.
- If one of the first two productions of w is $Be \to St \to (Be)$ then w = (w'). Then in the other derivation the first production cannot be $St \wedge St$. Otherwise $w = w_1 \wedge w_2$ where w_1 is a strict prefix of (w') which is impossible by our lemma.

The other first production also cannot be $Be \to \neg St$ (as w starts with '(') and thus all the first productions are $Be \to St \to (Be)$ and w = (w') where w' should be a smaller counterexample.

- Combining the two facts above, the first production of w cannot be $Be \to St$.
- If one the derivations of w starts with $Be \to \neg St$ since St is a parenthesized word then we cannot have another derivation of the form $Be \to St \wedge St$ otherwise $w = \neg w' = w_1 \wedge w_2$ with w_1 that is either a constant or of the form (u) and thus cannot start with \neg . If all first productions of ware $Be \to \neg St$ then we have a smaller counterexample w'.
- Therefore all first derivations of w are $Be \to St \wedge St$. Let us consider two: $w = w_1 \wedge w_2 = w'_1 \wedge w'_2$ where w_1 , w'_1 , w_2 and w'_2 are all constants (\top or \bot) or well-parenthesized words of the form (u) (with u also well-parenthesized). If one is a constant so is the other and one cannot be the strict prefix of the other (by our lemma) thus $w_1 = w'_1$ and so $w_2 = w'_2$ which gives us a smaller counterexample.

All in all such a minimal counterexample cannot exist thus the grammar is unambiguous.

6 Finite Context-Free Languages

6.1. Suppose L is infinite and let $z_0 \in L$. Suppose we have constructed z_0, \ldots, z_i . Since L is infinite, there is a finite number of words of length smaller than $2|z_i|$. Therefore we can find a word z_{i+1} such that $|z_{i+1}| \geq 2|z_i|$. Let S be the subset of L recursively constructed in this manner. By assumption S is context-free. Let n be its pumping length. Since S is infinite, there is a $z \in S$ with |w| > n such that we can write z = uvwxy with $uv^2wx^2y \in S$ and $1 \leq |vx| \leq n$. But then $|z| < |uv^2wx^2y| \leq |z| + n < 2|z|$, which contradicts the construction of S. Therefore L is finite.

(Alternatively: there are countably many context-free languages whereas an infinite set has an uncountable number of subsets! Thanks to Florent Noisette for this hack!)

7 Universal Automata

- 7.1. Suppose $L_U := \{f(D) \# w : w \in L(D)\}$ is regular and let *n* be its pumping length. The language $L = \{0^{2n}\}$ is also regular. Let L = L(D). Thus $w = f(D) \# 0^{2n} \in L_U$. By pumping at the *end* of *w* we have that w = xyz such that $|y| \ge 1$, $|yz| \le n$ and $xz \in L_U$. But since |xyz| > 2n+1 and $|yz| \le n$, there exists *u* such that x = f(D) # u and $uyz = 0^{2n}$. We have $xz \in L_U \Leftrightarrow f(D) \# uz \in L_U \Leftrightarrow uz \in L$ but |uz| < |uyz| thus uz cannot be in *L* and thus L_U cannot be regular.
- 7.1. Two automata D_1 and D_2 accept the same language if and only if $f(D_1) \# \sim_{L_U} f(D_2) \#$. Since there are infinitely many regular languages, there are infinitely many equivalence classes for \sim_{L_U} and thus L_U cannot be regular by the Myhill–Nerode theorem.
- 7.1. Let us suppose that L_U is regular and accepted by $(Q, \Sigma, \delta, q_0, F)$. We can find |Q| + 1 distinct languages $L_1, \ldots, L_{|Q|+1}$ accepted by DFAs $D_1, \ldots, D_{|Q|+1}$. By pigeonhole we can find $i \neq j$ such that $\tilde{\delta}(q_0, f(D_i)) = \tilde{\delta}(q_0, f(D_j))$. But this implies that for all w, $\tilde{\delta}(q_0, f(D_i) \# w) = \tilde{\delta}(q_0, f(D_j) \# w)$ and thus D_i accepts the same language as D_j .
- 7.1. Suppose that L_U is regular and DFA $U = (Q, \Sigma, \delta, q_0, F)$ accepts L_U . Let $U_a^b := \{w \mid \delta(a, w) = b\}$. Language U_a^b is regular as it is accepted by $(Q, \Sigma, \delta, a, \{b\})$. Consider now the language $L_R := \{w \mid w \# w \notin L_U\}$. We have $\bar{L}_R = \bigcup_{f \in Q} \bigcup_{q \in Q} U_i^q \cap U_{\delta(q,\#)}^f$. Hence \bar{L}_R is regular which implies L_R is also regular. Let D_R be a DFA recognizing L_R . We have now obtained a contradiction: $f(D_R) \in L_R \Leftrightarrow f(D_R) \# f(D_R) \notin L_U \Leftrightarrow f(D_R) \notin L_R$. (Thanks to Maxime Ramzy and Nicolas Fabiano for this solution.)

8 Unary Languages

8.1. Let L be a regular unary language and D a DFA recognizing L whose states are Q and final states are F. Let q_i be the state of the automaton after reading 0^i . We have $L = \{0^i \mid i \in \mathbb{N} \text{ such that } q_i \in F\}$. Since Q is finite we have two numbers j < k such that $q_k = q_j$, and since D is deterministic $q_{j+\ell} = q_{k+\ell} = q_{j+\ell \pmod{k-j}}$. Set c := k - j. We have:

$$L = \bigcup_{\substack{i < j \\ q_i \in F}} \{0^i\} \bigcup_{\substack{j \le i < k \\ q_i \in F}} \{0^{i+cn} \mid n \ge 0\}$$

★★ 8.2 Let *L* be a context-free unary language and let *P* be its pumping length. For each $m \in L$ with $P \leq |m|$ the pumping lemma gives us a decomposition of *m* into uvwxy such that $uv^iwx^iy \in L$ for all *i*. Since $m = 0^{|m|}$ we have $\{0^{|m|}\} \subseteq \{0^{|m|+l \cdot |xv|} \mid l \in \mathbb{N}\} \subseteq L$. For each $0^m \in L$ with m > P we might have several such decompositions but for each *m* we choose a decomposition and fix a k(m) such that

 $\begin{array}{l} 0 < k(m) \leq P \text{ and } \{0^{m+l \cdot k(m)} \mid l \in \mathbb{N}\} \subseteq L \text{ then we have } L = \{0^{|m|} \mid 0^{|m|} \in L\} = \{w \in L \mid |w| \leq P\} \bigcup_{P < m} \{0^{m+k(m) \times n} \mid n \in \mathbb{N}\}. \end{array}$

This union is infinite and we would like to rewrite it as a finite union. We notice that given m and m' we have $\{0^{|m|+n \times k(m)} \mid n \in \mathbb{N}\} \subseteq \{0^{|m'|+n \times k(m')} \mid n \in \mathbb{N}\}$ when $m \ge m'$, k(m) = k(m') and $m \equiv m'[k(m)]$. Therefore we can have a finite union by looking for each pair (i, j) at the smallest m such that k(m) = i and $m \equiv j[i]$ (notice that $0 \le j < i \le P$).

Let $c_{i,j} := \min_m \{m > P \mid (k(m) = i) \land (j = m \mod i)\}$ with the convention that $c_{i,j} := \infty$ when this set is empty. We now can define L as the following finite union:

$$L = \{ w \in L \mid |w| \le P \} \bigcup_{\substack{0 \le j < i \le P \\ c_{i,j} < \infty}} \{ 0^{c_{i,j} + i \times n} \mid n \in \mathbb{N} \} .$$

Each language on the right hand side is regular, and hence so is their finite union L.