
Midterm Formal Languages, Computability and Complexity

1 Pumping Lemmas

1.1. La,b,c is regular if and only if it is unary.

1.1.1) If at least two of a, b, c are zero, then (0a1b2c)∗ is a regular expression recognizing La,b,c.

1.1.2) We show that if at least two of a, b, c are non-zero, then La,b,c is not regular. Let n be the
pumping length and take w := 0an1bn2cn ∈ La,b,c. We can decompose w into xyz with |xy| ≤ n
and |y| ≥ 1 such that xyiz is in the language for all i ∈ N. Since |xy| ≤ n, string y is composed
of 0s only when a 6= 0, and 1s only otherwise (a and b cannot be both zero). We pump down and
look at wz ∈ La,b,c. If y has 0s only, then |wz|0 < an but still |wz|1 = bn and |wz|2 = cn. Since
a 6= 0 and either b or c is non-zero, xz is not of the correct form. Thus xz is not in the language,
a contradiction. If y has 1s only, then |wz|0 = 0 = an but |wz|1 < bn and |wz|2 = cn. In this case
both b and c are non-zero. Once again xz is not of the correct form, which is a contradiction.

1.2. La,b,c is context-free if and only if it is binary.

1.2.1) If at least one of a, b, c is zero (say, a = 0), then S → 1b S 2c | ε is a context-free grammar that
generates La,b,c.

1.2.2) We show that if a, b, c are all non-zero, then La,b,c is not context-free. Let n be the pumping
length and take z := 0an1bn2cn ∈ La,b,c. We can decompose z into uvwxy with |vwx| ≤ n and
|vx| ≥ 1 such that uviwxiy is in the language for all i ∈ N. Since |vwx| ≤ n, string vwx spans
across at most two letters (since a, b, c are all non-zero). That is, vwx misses either 0s or 2s. We
pump down and look at uwy ∈ La,b,c. Suppose vwx misses 0s. Since |vx| ≥ 1, string vx has a 1
or a 2. But then |uwy|0 = an and either |uwy|1 < bn or |uwy|2 < cn. Thus uwy is not in the
language, a contradiction. Now suppose vwx misses 2s. Since |vx| ≥ 1, string vx has a 0 or a 1.
But then |uwy|2 = cn and either |uwy|0 < an or |uwy|1 < bn. Again, this means uwy is not in
the language.

(Alternatively use closure under the homomorphism (0a, 1b, 2c) 7→ (0, 1, 2), and the facts that 0n1n is not
regular and 0n1n2n is not context-free.)

2 A Game of Dominoes

2.1. The language of dominoes is regular since it is Σ∗ \
⋃

(i,j)∈F Σ∗ijΣ∗ where F is the set of forbidden
pairs (u, v) where r(u) = 1∧ l(v) = 2 or r(u) = 2∧ l(v) = 1. These pairs are F = {2, 5, 8}×{7, 8, 9}∪
{3, 6, 9} × {4, 5, 6}.

2.2. We simulate a computation of the parity using an NFA with two states (even and odd). It is an NFA
because an encouter with a joker can move the automaton to both states. The automaton below
accepts the empty sequence but by removing a single value the language stays regular.

evenstart odd
1,2,3,4,6,7,8

1,2,3,4,5,7,9 1,2,3,4,5,7,9

2.3. We simulate the computation top− 3× bottom. After each domino is read, we consider the reminder
which is t− 3× b where t is the top row read and b is the bottom read. Let r be the current reminder
(i.e., r = t0 · · · ti − 3 × b0 · · · bi). Then the reminder after reading ti+1

bi+1
is 2r + ti+1 − 3 × bi+1. The

effects of the domino i on the reminder r is described by f(r, i) where

f(r, 1) = 2r, f(r, 2) = 2r − 3, f(r, 3) = 2r + 1, f(r, 4) = 2r − 2 .

Midterm 3 hours November the 23rd 2017

Midterm Formal Languages, Computability and Complexity

Our automaton has states r = 0, r = 1, r = 2 and the transition function is f . The automaton
starts with a reminder of zero and accepts when the reminder is zero. We only consider the states
{0, 1, 2} because once outside this set we can never return to it: for k ∈ {−3,−2, 1, 0} if r ≤ −1 then
2r + k ≤ 2r + 1 ≤ r and if r ≥ 3 then 2r + k ≥ r + (r − 3) ≥ r.

r=0start r=1 r=2

3

4

1
1

2

4

3 The Dichotomy Property

Let L be a regular language accepted by a deterministic finite automaton with states Q.

3.1. Clearly if ∃w ∈ L : |w| ≤ |Q| then L is non-empty. Now if L is non-empty then we take a word
w = w1 · · ·wk of shortest length in L. A run of the automaton for w will go through the states
q1, . . . , qk. Now if k > |Q| we would have that qi = qj for some i < j. But then w1 · · ·wiwj+1 · · ·wk is
a shorter word that is also in L. Hence k ≤ |Q|.

3.2. We first show that each word w ∈ L with |Q| < |w| can be reduced to a word w′ ∈ L with |w′| <
|w| ≤ |w′|+ |Q| or augmented to a word w′′ with |w| < |w′′|.
A run of the automaton on w = w1 · · ·wn passes through states q1, . . . , qn. Since n > |Q|, there are
i < j such that qi = qj . Consider a pair i < j with minimal j − i. By minimality, states qi, . . . , qj−1
are all distinct. Therefore j − i ≤ |Q| and the word w′ = w1 · · ·wiwj+1 · · ·wn is in the language with
|w′| < |w| and |w′| ≥ |w| − |Q|. But the word w′′ = w1 · · ·wiwi+1 · · ·wjwi+1 · · ·wjwj+1 · · ·wn is also
in the language with |w′′| > |w|.
If L is infinite we can find a w ∈ L such that |Q| < |w|. The we can repeatedly reduce w until
|Q| < |w| ≤ 2|Q|. Such a method works because at each step we reduce the length by at least by 1
and at most |Q|. Conversely, if w ∈ L with |Q| < |w| then by iteratively augmenting w we can create
a sequence w0 := w and wi+1 := w′′i such that wi ∈ L for all i. This shows L is infinite.

4 Intersection of Regular and Context-Free Languages

4.1. Let M = (Q,Σ,Γ, δ, q0, Z, F) be a PDA recognizing L′ and A = (Q′,Σ, γ, q′0, F
′) be a DFA recognizing

L. Then L′∩L is recognized by I = (Q×Q′,Σ,Γ, ρ, (q0, q′0), Z, F×F ′) where ρ((q, q′), c, p) = ((q̄, q̄′), p̄)
with (q̄, p̄) = δ(c, q, p) and q̄′ = γ(c, q′). We also extend γ with γ(ε, q′) = q′.

If a word w is recognized by I then decompose a run of the automaton into ((qi, q
′
i), pi, ci)i∈1..n where

(qi, q
′
i) is the state after the i-th transition, pi is stack state and ci ∈ Σ ∪ {ε} is the transition letter.

Then (qi, pi, ci)i∈1..n corresponds to a run of M and (q′i, ci)i∈N |ci 6=ε corresponds to a run of A both of
which accept w. Therefore w ∈ L ∩ L′.
Conversely, if w ∈ L ∩ L′ we can find a run (qi, pi, ci)i∈1..n of M and a run (q′i, ci)i∈1..n|i 6=ε of A both
accepting w. Then (qi, q

′
i), pi, ci is a valid run of I accepting w.

5 Boolean Expressions

G := ({Be, St},Σ, R,Be), where Σ = {∧,¬,>,⊥, (,)} and the production rules R are

Be→ St ∧ St | ¬St | St and St→ > | ⊥ | (Be) .

Midterm 3 hours November the 23rd 2017

Midterm Formal Languages, Computability and Complexity

5.1. We duplicate each term one for true and one for false (i.e. Be>, Be⊥, St>, St⊥) and adapt the rules
in consequence (Be> is the start symbol):

St> → > | (Be>) St⊥ → ⊥ | (Be⊥)
Be> → St> ∧ St> | ¬St⊥ | St> Be⊥ → St> ∧ St⊥ | St⊥ ∧ St⊥ | St⊥ ∧ St> | ¬St> | St⊥

5.2. We use one state for the end of computation and one state for the actual computation. The computing
state reduces elements of St to > or ⊥ as soon as they are completely read so the stack never contains
’)’ but can contain all other symbols.

computestart finish
#False, ε→ ε

ε, c→ c for c ∈ {>,⊥,¬,∧, (}

(True,)→>
(False,)→⊥

The rules above exist for each True ∈ { > ∧ > , ¬⊥ , > } and for each False ∈ { > ∧ ⊥ , ⊥ ∧
⊥ , ⊥ ∧> , ¬> , ⊥ }.

5.3. A word u is well-parenthesized when all prefixes of u contain more (s than)s and in total u contain
an equal number of them. This well-parenthesized property can be shown by induction on the length
of derivation for terms generated by St and Be. For length 1 this is clear. For the induction step we
see that all rules preserve this criterion and thus the well-parenthesizing of the terms generated.

We use the following lemma: u cannot be well-parenthesized and a strict prefix of (v) where v is well-
parenthesized. All strict, non-empty prefixes of (v) are prefixes of v with a ’(’ at the beginning. As
prefixes of v contain more ’(’ then ’)’ the additional ’(’ imposes that they are not well-parenthesized.

Let w be a minimal word with two distinct derivations Be
∗−→ w. We have the following.

• w cannot be a constant.

• If one of the first two productions of w is Be → St → (Be) then w = (w′). Then in the other
derivation the first production cannot be St ∧ St. Otherwise w = w1 ∧ w2 where w1 is a strict
prefix of (w′) which is impossible by our lemma.

The other first production also cannot be Be→ ¬St (as w starts with ’(’) and thus all the first
productions are Be→ St→ (Be) and w = (w′) where w′ should be a smaller counterexample.

• Combining the two facts above, the first production of w cannot be Be→ St.

• If one the derivations of w starts with Be→ ¬St since St is a parenthesized word then we cannot
have another derivation of the form Be→ St ∧ St otherwise w = ¬w′ = w1 ∧w2 with w1 that is
either a constant or of the form (u) and thus cannot start with ¬. If all first productions of w
are Be→ ¬St then we have a smaller counterexample w′.

• Therefore all first derivations of w are Be→ St∧St. Let us consider two: w = w1∧w2 = w′1∧w′2
where w1, w

′
1, w2 and w′2 are all constants (> or ⊥) or well-parenthesized words of the form

(u) (with u also well-parenthesized). If one is a constant so is the other and one cannot be the
strict prefix of the other (by our lemma) thus w1 = w′1 and so w2 = w′2 which gives us a smaller
counterexample.

All in all such a minimal counterexample cannot exist thus the grammar is unambiguous.

Midterm 3 hours November the 23rd 2017

Midterm Formal Languages, Computability and Complexity

6 Finite Context-Free Languages

6.1. Suppose L is infinite and let z0 ∈ L. Suppose we have constructed z0, . . . , zi. Since L is infinite, there
is a finite number of words of length smaller than 2|zi|. Therefore we can find a word zi+1 such that
|zi+1| ≥ 2|zi|. Let S be the subset of L recursively constructed in this manner. By assumption S is
context-free. Let n be its pumping length. Since S is infinite, there is a z ∈ S with |w| > n such that we
can write z = uvwxy with uv2wx2y ∈ S and 1 ≤ |vx| ≤ n. But then |z| < |uv2wx2y| ≤ |z|+ n < 2|z|,
which contradicts the construction of S. Therefore L is finite.

(Alternatively: there are countably many context-free languages whereas an infinite set has an uncount-
able number of subsets! Thanks to Florent Noisette for this hack!)

7 Universal Automata

7.1. Suppose LU := {f(D)#w : w ∈ L(D)} is regular and let n be its pumping length. The language
L = {02n} is also regular. Let L = L(D). Thus w = f(D)#02n ∈ LU . By pumping at the end of w
we have that w = xyz such that |y| ≥ 1, |yz| ≤ n and xz ∈ LU . But since |xyz| > 2n+1 and |yz| ≤ n,
there exists u such that x = f(D)#u and uyz = 02n. We have xz ∈ LU ⇔ f(D)#uz ∈ LU ⇔ uz ∈ L
but |uz| < |uyz| thus uz cannot be in L and thus LU cannot be regular.

7.1. Two automata D1 and D2 accept the same language if and only if f(D1)# ∼LU
f(D2)#. Since there

are infinitely many regular languages, there are infinitely many equivalence classes for ∼LU
and thus

LU cannot be regular by the Myhill–Nerode theorem.

7.1. Let us suppose that LU is regular and accepted by (Q,Σ, δ, q0, F). We can find |Q| + 1 distinct
languages L1, . . . , L|Q|+1 accepted by DFAs D1, . . . , D|Q|+1. By pigeonhole we can find i 6= j such that

δ̃(q0, f(Di)) = δ̃(q0, f(Dj)). But this implies that for all w, δ̃(q0, f(Di)#w) = δ̃(q0, f(Dj)#w) and
thus Di accepts the same language as Dj .

7.1. Suppose that LU is regular and DFA U = (Q,Σ, δ, q0, F) accepts LU . Let U ba := {w | δ(a,w) = b}.
Language U ba is regular as it is accepted by (Q,Σ, δ, a, {b}). Consider now the language LR := {w |
w#w 6∈ LU}. We have L̄R =

⋃
f∈Q

⋃
q∈Q U

q
i ∩ U

f
δ(q,#). Hence L̄R is regular which implies LR is

also regular. Let DR be a DFA recognizing LR. We have now obtained a contradiction: f(DR) ∈
LR ⇔ f(DR)#f(DR) 6∈ LU ⇔ f(DR) 6∈ LR. (Thanks to Maxime Ramzy and Nicolas Fabiano for this
solution.)

8 Unary Languages

8.1. Let L be a regular unary language and D a DFA recognizing L whose states are Q and final states are
F . Let qi be the state of the automaton after reading 0i. We have L = {0i | i ∈ N such that qi ∈ F}.
Since Q is finite we have two numbers j < k such that qk = qj , and since D is deterministic qj+` =
qk+` = qj+` (mod k−j). Set c := k − j. We have:

L =
⋃
i<j
qi∈F

{0i}
⋃

j≤i<k
qi∈F

{0i+cn | n ≥ 0}

FF 8.2 Let L be a context-free unary language and let P be its pumping length. For each m ∈ L with
P ≤ |m| the pumping lemma gives us a decomposition of m into uvwxy such that uviwxiy ∈ L for all
i. Since m = 0|m| we have {0|m|} ⊆ {0|m|+l·|xv| | l ∈ N} ⊆ L. For each 0m ∈ L with m > P we might
have several such decompositions but for each m we choose a decomposition and fix a k(m) such that

Midterm 3 hours November the 23rd 2017

Midterm Formal Languages, Computability and Complexity

0 < k(m) ≤ P and {0m+l·k(m) | l ∈ N} ⊆ L then we have L = {0|m| | 0|m| ∈ L} = {w ∈ L | |w| ≤
P}

⋃
P<m{0m+k(m)×n | n ∈ N}.

This union is infinite and we would like to rewrite it as a finite union. We notice that given m and
m′ we have {0|m|+n×k(m) | n ∈ N} ⊆ {0|m′|+n×k(m′) | n ∈ N} when m ≥ m′, k(m) = k(m′) and
m ≡ m′[k(m)]. Therefore we can have a finite union by looking for each pair (i, j) at the smallest m
such that k(m) = i and m ≡ j[i] (notice that 0 ≤ j < i ≤ P).

Let ci,j := minm{m > P | (k(m) = i) ∧ (j = m mod i)} with the convention that ci,j :=∞ when this
set is empty. We now can define L as the following finite union:

L = {w ∈ L | |w| ≤ P}
⋃

0≤j<i≤P
ci,j<∞

{0ci,j+i×n | n ∈ N} .

Each language on the right hand side is regular, and hence so is their finite union L.

Midterm 3 hours November the 23rd 2017

