Midterm FORMAL LANGUAGES, COMPUTABILITY AND COMPLEXITY

1 Pumping Lemmas

1.1. Lgp, is regular if and only if it is unary.
1.1.1) If at least two of a, b, ¢ are zero, then (091°2¢)* is a regular expression recognizing Lap.c-

1.1.2) We show that if at least two of a,b,c are non-zero, then L, . is not regular. Let n be the
pumping length and take w := 09"1°"2" € L, ;.. We can decompose w into xyz with |zy| < n
and |y| > 1 such that xy’z is in the language for all i € N. Since |xy| < n, string y is composed
of Os only when a # 0, and 1s only otherwise (a and b cannot be both zero). We pump down and
look at wz € Lgpc. If y has Os only, then |wz|g < an but still |wz|; = bn and |wz|s = en. Since
a # 0 and either b or ¢ is non-zero, xz is not of the correct form. Thus zz is not in the language,
a contradiction. If y has 1s only, then |wz|p = 0 = an but |wz|; < bn and |wz|2 = cn. In this case
both b and ¢ are non-zero. Once again zz is not of the correct form, which is a contradiction.

1.2. Lgp, is context-free if and only if it is binary.

1.2.1) If at least one of a, b, c is zero (say, a = 0), then S — 1° S 2¢ | ¢ is a context-free grammar that
generates L p .

1.2.2) We show that if a,b,c are all non-zero, then L, . is not context-free. Let n be the pumping
length and take z := panqbnocen ¢ Lype. We can decompose z into wvwzy with [vwz| < n and
lvz| > 1 such that uvwz'y is in the language for all i € N. Since [vwz| < n, string vwz spans
across at most two letters (since a, b, ¢ are all non-zero). That is, vwz misses either Os or 2s. We
pump down and look at uwy € Lq .. Suppose vwz misses 0s. Since |vz| > 1, string va has a 1
or a 2. But then |uwy|p = an and either [uwyly < bn or |uwy|z < c¢n. Thus uwy is not in the
language, a contradiction. Now suppose vwz misses 2s. Since |vx| > 1, string vz has a 0 or a 1.
But then |uwy|e = cn and either |uwylp < an or |uwy|; < bn. Again, this means uwy is not in
the language.

(Alternatively use closure under the homomorphism (0%, 1%,2¢) +— (0, 1,2), and the facts that 0™1" is not
regular and 0"1™2" is not context-free.)

2 A Game of Dominoes

2.1. The language of dominoes is regular since it is ¥* \ U(i,j)e g 2Niga* where F' is the set of forbidden
pairs (u,v) where r(u) = 1 Al(v) =2 or r(u) = 2Al(v) = 1. These pairs are F' = {2,5,8} x {7,8,9} U
{3,6,9} x {4,5,6}.

2.2. We simulate a computation of the parity using an NFA with two states (even and odd). It is an NFA
because an encouter with a joker can move the automaton to both states. The automaton below
accepts the empty sequence but by removing a single value the language stays regular.

1,2,3,4,5,7,9 1,2,3,4,5,7,9

1,2,3,4,6,7,8
start —( even odd

2.3. We simulate the computation top — 3 x bottom. After each domino is read, we consider the reminder
which is ¢ — 3 x b where t is the top row read and b is the bottom read. Let r be the current reminder
(ie., r =tg---t; —3 X bg---b; ). Then the reminder after reading Z’i is 2r + t;p1 — 3 X biy1. The

effects of the domino i on the reminder r is described by f(r,i) where

fr,1y=2r, f(r,2)=2r-3, f(r,3)=2r+1, f(rd)=2r—2.
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Our automaton has states r = 0, r = 1, r = 2 and the transition function is f. The automaton
starts with a reminder of zero and accepts when the reminder is zero. We only consider the states
{0,1,2} because once outside this set we can never return to it: for k € {—3,-2,1,0} if r < —1 then
2r+k<2r+1<randifr>3then2r+k>r+(r—3)>r.

1 4

start H

3 The Dichotomy Property

Let L be a regular language accepted by a deterministic finite automaton with states Q.

3.1. Clearly if 3w € L : |w| < |Q] then L is non-empty. Now if L is non-empty then we take a word
w = wy ---wg of shortest length in L. A run of the automaton for w will go through the states
qi,--.,q,- Now if k > |Q| we would have that ¢; = ¢; for some ¢ < j. But then wq - - - wjwjqq - - - wy, is
a shorter word that is also in L. Hence k < |Q)].

3.2. We first show that each word w € L with |Q| < |w| can be reduced to a word w’ € L with |u'| <
|lw| < |w'| +|Q] or augmented to a word w” with |w| < |w”|.

A run of the automaton on w = w; -- - w, passes through states qi,...,q,. Since n > |Q|, there are
i < j such that ¢; = ¢;. Consider a pair ¢ < j with minimal j — ¢. By minimality, states ¢;,...,q;—1
are all distinct. Therefore j — ¢ < |Q| and the word w’ = wy - - - wjwj41 - - - wy, is in the language with
|w'| < |w] and |w'| > |w| — |Q|. But the word w” = w; -+ - WiWit1 -+ - Wjwig1 - - WjWj11 - - - Wy 18 also
in the language with |w”| > |w|.

If L is infinite we can find a w € L such that |Q| < |w|. The we can repeatedly reduce w until
Q| < Jw| < 2|Q|. Such a method works because at each step we reduce the length by at least by 1
and at most |@Q|. Conversely, if w € L with |Q| < |w| then by iteratively augmenting w we can create
a sequence wyg = w and w;4 = wg’ such that w; € L for all 4. This shows L is infinite.

4 Intersection of Regular and Context-Free Languages

4.1. Let M = (Q,%,T,0,qo, Z, F) be a PDA recognizing L' and A = (Q’, 2,7, ¢(, F') be a DFA recognizing
L. Then L'NL is recognized by I = (@ xQ", X, T, p, (90, 4), Z, F' x ') where p((q,q'),¢,p) = ((¢.7), P)
with (q,p) = (e, q,p) and 7 = (¢, ¢'). We also extend v with y(¢,¢') = ¢'.

If a word w is recognized by I then decompose a run of the automaton into ((¢;, ¢.), pi, ¢i)ic1..n Where
(gi, q)) is the state after the i-th transition, p; is stack state and ¢; € ¥ U {e} is the transition letter.
Then (g;, pi, ¢i)ie1.n corresponds to a run of M and (gj, ¢;)icN|e,e corresponds to a run of A both of
which accept w. Therefore w € LN L.

Conversely, if w € L N L’ we can find a run (g;, p;, ¢i)ie1.n of M and a run (gj, ¢;)ic1. njize of A both
accepting w. Then (g;,q}), pi, ¢ is a valid run of I accepting w.

5 Boolean Expressions
G := ({Be, St},%, R, Be), where ¥ = {A,—, T, L, (, )} and the production rules R are

Be — St ASt|—-St|St and St— T|L|(Be).
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5.1. We duplicate each term one for true and one for false (i.e. Be',Bet, StT, Stl) and adapt the rules
in consequence (Be' is the start symbol):

StT — T |(Bel) St+ — 1| (Bet)
Be' — StTAStT|-Stt|stT Bet — StTASth | SttASth| SttAStT | ~StT | St+

5.2. We use one state for the end of computation and one state for the actual computation. The computing
state reduces elements of St to T or L as soon as they are completely read so the stack never contains
’)’ but can contain all other symbols.

e,c—cforece{T,L,— A (}

#False, e — e
start —

(True,)—T
(False,)—L

The rules above exist for each True € { TAT , =L, T } and for each False € { TA L, LA
L, LAT, =T, L}

5.3. A word u is well-parenthesized when all prefixes of u contain more (s than )s and in total u contain
an equal number of them. This well-parenthesized property can be shown by induction on the length
of derivation for terms generated by St and Be. For length 1 this is clear. For the induction step we
see that all rules preserve this criterion and thus the well-parenthesizing of the terms generated.

We use the following lemma: u cannot be well-parenthesized and a strict prefix of (v) where v is well-
parenthesized. All strict, non-empty prefixes of (v) are prefixes of v with a ’(" at the beginning. As
prefixes of v contain more ’(’ then ’)’ the additional ’(* imposes that they are not well-parenthesized.

Let w be a minimal word with two distinct derivations Be = w. We have the following.
e w cannot be a constant.

e If one of the first two productions of w is Be — St — (Be) then w = (w'). Then in the other
derivation the first production cannot be St A St. Otherwise w = wy A wy where wy is a strict
prefix of (w') which is impossible by our lemma.

The other first production also cannot be Be — =St (as w starts with ’(’) and thus all the first
productions are Be — St — (Be) and w = (w’) where w’ should be a smaller counterexample.

e Combining the two facts above, the first production of w cannot be Be — St.

e If one the derivations of w starts with Be — —St since St is a parenthesized word then we cannot
have another derivation of the form Be — St A St otherwise w = —w’ = w1 A wy with wy that is
either a constant or of the form (u) and thus cannot start with —. If all first productions of w
are Be — =St then we have a smaller counterexample w’.

e Therefore all first derivations of w are Be — St A St. Let us consider two: w = w; Awg = w) Awy
where wy, w}, we and wj are all constants (T or L) or well-parenthesized words of the form
(u) (with u also well-parenthesized). If one is a constant so is the other and one cannot be the
strict prefix of the other (by our lemma) thus w; = w] and so we = w) which gives us a smaller
counterexample.

All in all such a minimal counterexample cannot exist thus the grammar is unambiguous.
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6 Finite Context-Free Languages

6.1. Suppose L is infinite and let zy € L. Suppose we have constructed zg, ..., z;. Since L is infinite, there
is a finite number of words of length smaller than 2|z;|. Therefore we can find a word z;11 such that
|zit1| > 2|z;|. Let S be the subset of L recursively constructed in this manner. By assumption S is
context-free. Let n be its pumping length. Since S is infinite, there is a z € S with |w| > n such that we
can write z = uwvwzry with uv?wr?y € S and 1 < |vz| < n. But then |z| < |[w?wr?y| < |2| +n < 22|,
which contradicts the construction of S. Therefore L is finite.

(Alternatively: there are countably many context-free languages whereas an infinite set has an uncount-
able number of subsets! Thanks to Florent Noisette for this hack!)

7 Universal Automata

7.1. Suppose Ly = {f(D)#w : w € L(D)} is regular and let n be its pumping length. The language
L = {0} is also regular. Let L = L(D). Thus w = f(D)#0%" € Ly. By pumping at the end of w
we have that w = zyz such that |y| > 1, |yz| <n and zz € Ly. But since |zyz| > 2n+1 and |yz| < n,
there exists u such that x = f(D)#u and uyz = 0%". We have zz € Ly < f(D)#uz € Ly < uz € L
but |uz| < |uyz| thus uz cannot be in L and thus Ly cannot be regular.

7.1. Two automata Dy and Dj accept the same language if and only if f(D1)# ~r, f(D2)#. Since there
are infinitely many regular languages, there are infinitely many equivalence classes for ~r,, and thus
Ly cannot be regular by the Myhill-Nerode theorem.

7.1. Let us suppose that Ly is regular and accepted by (Q,%,0,qo, F'). We can find |Q| + 1 distinct
languages Ly, ..., Lg|4+1 accepted by DFAs Dy, ..., D|g|11. By pigeonhole we can find i # j such that
d(qo, f(Di)) = 6(qo, f(D;)). But this implies that for all w, d(qo, f(Di)#w) = 6(qo, f(D;)#w) and
thus D; accepts the same language as D;.

7.1. Suppose that Ly is regular and DFA U = (Q, %, 6, qo, F') accepts Ly. Let U’ := {w | 6(a,w) = b}.
Language U? is regular as it is accepted by (Q, 3,6, a, {b}). Consider now the language Lg := {w |
w#w ¢ Ly}. We have Ly = UfeQ quQ uin Ug(q,#). Hence Lp is regular which implies Lg is
also regular. Let D be a DFA recognizing Lr. We have now obtained a contradiction: f(Dpgr) €
Lr < f(Dr)#f(Dgr) ¢ Ly < f(Dgr) ¢ Lr. (Thanks to Maxime Ramzy and Nicolas Fabiano for this
solution.)

8 Unary Languages

8.1. Let L be a regular unary language and D a DFA recognizing L whose states are () and final states are
F. Let g; be the state of the automaton after reading 0°. We have L = {0 | i € N such that ¢; € F'}.
Since () is finite we have two numbers j < k such that g; = ¢;, and since D is deterministic g, =
Qk+0 = 4j4+0 (mod k—j)- Set ¢ :=k — j. We have:

L= U {Oz} U {OiJrcn ’ n > O}
1<J i<k
q;€F q,€F

%% 8.2 Let L be a context-free unary language and let P be its pumping length. For each m € L with
P < |m| the pumping lemma gives us a decomposition of m into uvwzxy such that uv'wz'y € L for all

i. Since m = 0™l we have {0/} C {olmI+tlevl | | € N} C L. For each 0™ € L with m > P we might
have several such decompositions but for each m we choose a decomposition and fix a k(m) such that
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0 < k(m) < P and {0™F“5(™) | | € N} C L then we have L = {0/ | 0™l € L} = {w € L | |w| <
P}Up.op {0740 | 1 € N,

This union is infinite and we would like to rewrite it as a finite union. We notice that given m and
m’ we have {0ImI+nxk(m) | e N} C {ol™+7xk(m) | o € N} when m > m/, k(m) = k(m') and
m = m/[k(m)]. Therefore we can have a finite union by looking for each pair (4, ) at the smallest m
such that k(m) =i and m = j[i] (notice that 0 < j <i < P).

Let ¢; j := miny,{m > P | (k(m) = 1) A (j = m mod i)} with the convention that ¢; ; := oo when this
set is empty. We now can define L as the following finite union:

L={weLl|lw <P} [J {0 |neN}.

0<j<i<P
Ci,j<°°

Each language on the right hand side is regular, and hence so is their finite union L.
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